Given the following information on a portfolio of Stock X and Stock Y, what is the portfolio standard deviation?
Probability of boom state = 30%
Probability of normal state = 70%
Expected return on X = 14.5%
Expected return on Y = 14%
Variance on X = 0.004725
Variance on Y = 0.0189
Portfolio weight on X = 50%
Portfolio weight on Y = 50%
Correlation between X and Y = -1
3.44%
Working:
a. | Standard deviation of X | = | Variance^(1/2) | ||||||||||||||||||||
= | 0.004725^(1/2) | ||||||||||||||||||||||
= | 0.0687 | ||||||||||||||||||||||
Standard deviation of Y | = | Variance^(1/2) | |||||||||||||||||||||
= | 0.0189^(1/2) | ||||||||||||||||||||||
= | 0.1375 | ||||||||||||||||||||||
b. | Portfolio standard deviation | = | (((Weight of X^2)*Variance of X)+((Weight of Y^2)*Variance of Y)+(2*Weight of X* Weight of Y *Standard deviation of X*Standard Deviation of Y*correlation between X and Y))^(1/2) | ||||||||||||||||||||
= | (((.50^2)*0.004725)+((0.50^2)*0.0189)+(2*0.50*0.50*0.0687*0.1375*-1))^(1/2) | ||||||||||||||||||||||
= | 3.44% | ||||||||||||||||||||||
Get Answers For Free
Most questions answered within 1 hours.