Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $30, (2) strike price is $37, (3) time to expiration is 3 months, (4) annualized risk-free rate is 5%, and (5) variance of stock return is 0.16. Do not round intermediate calculations. Round your answer to the nearest cent.
$ ??????
PLEASE SHOW THE FORMULA!! Thank you :)
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 30 | |||||
t = time to expiry = | 0.25 | |||||
K = Strike price = | 37 | |||||
r = Risk free rate = | 5.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 40% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(30/37)+(0.05-0+0.4^2/2)*0.25)/(0.4*0.25^(1/2)) | ||||||
d1 = -0.886103 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =-0.886103-0.4*0.25^(1/2) | ||||||
d2 = -1.086103 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.187781 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.138717 | ||||||
Value of call= 30*0.187781-0.138717*37*e^(-0.05*0.25) | ||||||
Value of call= 0.56 |
Get Answers For Free
Most questions answered within 1 hours.