1. What is the future value of P2,100 in 17 years assuming an interest rate of 8.4 percent compounded semiannually?
2. You want to buy a new sports coupe for P68,500, and the finance office at the dealership has quoted you a 6.9 percent APR loan for 60 months to buy the car. What will your monthly payments be? What is the effective annual rate on this loan?
1)
future value = present value*(1+r)^n
r = rate of interest per period = 8.4% / 2 = 4.2%
n = number of periods = 17*2 = 34
future value = 2100*(1+4.2%)^34
= $8505.93
2)
Present value of annuity = P*[1 - (1+r)^-n / r ]
given APR = 6.9%
P = monthly payments
monthly rate = 6.9% / 12 = 0.575%
68500 = P*[1 - (1+0.575%)^-60 / 0.575% ]
Monthly Payments(P) = $1353.15
Effective annual rate = (1 +(r/n))^n - 1
r = rate of interest
n = number of compounding periods
EAR = (1 + (6.9%/12))^12 - 1
= 7.122%
Get Answers For Free
Most questions answered within 1 hours.