What would be the option price if S0=49, risk-free rate=5%, σ=20%, Strike Price = 50, time to maturity=20 weeks. d1=1.542 and d2=0.648
S | 49.00 | current stock price | ||
X | 50.00 | exercise price | ||
r | 5.00% | risk-free rate of interest | ||
T | 0.40 | time to maturity of option (in years) | ||
Sigma | 20.00% | stock volatility | ||
d1 | 0.0616 | <-- (LN(S/X)+(r+0.5*sigma^2)*T)/(sigma*SQRT(T)) | ||
d2 | -0.0648 | <-- d1 - sigma*SQRT(T) | ||
N(d1) | 0.5246 | <--- Uses formula NormSDist(d1) | ||
N(d2) | 0.4741 | <--- Uses formula NormSDist(d2) | ||
Call price | 2.47 | <-- S*N(d1)-X*exp(-r*T)*N(d2) | ||
Put price | 2.48 | <-- call price - S + X*Exp(-r*T): by Put-Call parity |
Get Answers For Free
Most questions answered within 1 hours.