Let S = $100, K = $120, σ = 30%, r = 0.08, and δ = 0. Compute the Black-Scholes call price for 1 year to maturity.
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 100 | |||||
t = time to expiry = | 1 | |||||
K = Strike price = | 120 | |||||
r = Risk free rate = | 8.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 30% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(100/120)+(0.08-0+0.3^2/2)*1)/(0.3*1^(1/2)) | ||||||
d1 = -0.191072 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =-0.191072-0.3*1^(1/2) | ||||||
d2 = -0.491072 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.424235 | ||||||
N(d1) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.311688 | ||||||
Value of call= 100*0.424235-0.311688*120*e^(-0.08*1) | ||||||
Value of call= 7.9 |
Get Answers For Free
Most questions answered within 1 hours.