Question

Why is this linear problem a alternate optimal solution Min 3X+3Y 1X+2Y less than 16 1X+1Y...

Why is this linear problem a alternate optimal solution Min 3X+3Y 1X+2Y less than 16 1X+1Y less than 10 5X + 3Y less than 45 x,y, greater than 0

Homework Answers

Answer #1

This is an alternate optimal solution as it has got more than one optimal solution.

Here the given problem is:

Min

3X + 3Y

s.t.

1X + 2Y ≤ 16

1X + 1Y ≤ 10

5X + 3Y ≤ 45

     X , Y ≥ 0

When solving the problem graphically we will start with 1x+2y<=16. Here take y as 0 and so x is 16 and when x is taken as 0 y will be 8. Thus points for this line will be (16,0) and (0,8)

For the line 1x+1y<=10 the points will be (10,0) and (0,10)

Lastly for 5x+3y<=45 the points will be (9,0) and (0,15)

The graph for the same is shown below:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.For the following linear programming problem Max 5X + 7Y s.t. 1X+ 1Y≤ 6 3X +1Y...
1.For the following linear programming problem Max 5X + 7Y s.t. 1X+ 1Y≤ 6 3X +1Y ≤ 12 X+ 2Y ≤ 10 X, Y ≥ 0 a)Write the problem in standard form. b)Solve the problem neatly using the graphical solution procedure(on paper). c)What are the values of the three slack variables at the optimal solution? d)Solve the problem with Microsoft Excel and attach your “own” printout.
Find the complete optimal solution to this linear programming problem.                         ...
Find the complete optimal solution to this linear programming problem.                                      Min   5x + 6y                                  s.t.   3x + y >= 15                  x + 2y >= 12       I am using excel, without the slover please show all work and formulas and all steps. and graphs i       3x + 2y >= 24                  x , y...
Question 5 options: Consider the following integer linear programming problem: Max Z =       3x +...
Question 5 options: Consider the following integer linear programming problem: Max Z =       3x + 2y Subject to:    3x + 5y ≤ 30 5x + 2y ≤ 28                     x ≤ 8                     x, y ≥ 0 and integer The solution to the linear programming formulation is: x = 4.21, y = 3.47. What is the optimal solution to the integer linear programming problem? State the optimal values of decision variables. x = , y =
Find the complete optimal solution to this linear programming problem using Excel and type in the...
Find the complete optimal solution to this linear programming problem using Excel and type in the optimal value of Y below (Y*=?). Max 5X + 3Y s.t. 2X + 3Y <= 30 2X + 5Y <= 40 6X - 5Y <= 0 X , Y >= 0
               For the following linear programming problem, determine the optimal solution by the...
               For the following linear programming problem, determine the optimal solution by the graphical solution method                                                                                              Max   -x + 2y                                                                                                          s.t.   6x - 2y <= 3          ...
Solve the system of linear equations. 3x-3y+6z=12 x+2y-z=10 5x-8y+13z=14
Solve the system of linear equations. 3x-3y+6z=12 x+2y-z=10 5x-8y+13z=14
Question 5 options: Consider the following integer linear programming problem: Max Z =       3x +...
Question 5 options: Consider the following integer linear programming problem: Max Z =       3x + 2y Subject to:    3x + 5y ? 30 4x + 2y ? 28                     x ? 8                     x , y ? 0 and integer The solution to the linear programming formulation is: x = 5.714, y = 2.571. What is the optimal solution to the integer linear programming problem? State the optimal values of decision variables and the value of the objective function.
Verify that the given function is the solution of the initial value problem. 1. A) x^3y'''-3x^2y''+6xy'-6y=...
Verify that the given function is the solution of the initial value problem. 1. A) x^3y'''-3x^2y''+6xy'-6y= -(24/x) y(-1)=0 y'(-1)=0 y''(-1)=0 y=-6x-8x^2-3x^3+(1/x) C) xy'''-y''-xy'+y^2= x^2 y(1)=2 y'(1)=5 y''(1)=-1 y=-x^2-2+2e^(x-1-e^-(x-1))+4x
Solve for the general solution x^4y''''+4x^3y'''+3x^2y''-xy'+y=0
Solve for the general solution x^4y''''+4x^3y'''+3x^2y''-xy'+y=0
Solve the linear programming problem by the method of corners. Maximize P = 2x + 3y    ...
Solve the linear programming problem by the method of corners. Maximize P = 2x + 3y     subject to   x + y ≤ 10 3x + y ≥ 12 −2x + 3y ≥ 11 x ≥ 0, y ≥ 0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT