Assume that the current XYZ stock price is equal to $33, the volatility of XYZ is 32%, and XYZ stock pays 1% dividends each year. The risk free interest rate is 6% today. Consider an European call option with a strike price of $35, and suppose that the option will be expired after 68 days from today (1 year = 365 days). Then, what is the value of the call option?
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 33 | |||||
t = time to expiry = | 0.18630137 | |||||
K = Strike price = | 35 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 1.0% | |||||
σ = Std dev = | 32% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(33/35)+(0.06-0.01+0.32^2/2)*0.186301369863014)/(0.32*0.186301369863014^(1/2)) | ||||||
d1 = -0.289507 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =-0.289507-0.32*0.186301369863014^(1/2) | ||||||
d2 = -0.427627 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.386097 | ||||||
N(d1) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.334461 | ||||||
Value of call= 33*0.386097-0.334461*35*e^(-0.06*0.186301369863014) | ||||||
Value of call= 1.17 |
Get Answers For Free
Most questions answered within 1 hours.