Question

Suppose the expected returns and standard deviations of stocks A and B are E(RA) 0.15, E(RB)...

  1. Suppose the expected returns and standard deviations of stocks A and B are E(RA) 0.15, E(RB) 0.25, σA 0.40, and σB 0.65, respectively.

a. Calculate the expected return and standard deviation of a portfolio that is composed of 40 percent A and 60 percent B when the correlation between the returns on A and B is 0.5.

b. Whether the risk (standard deviation) of the portfolio will decrease or increase if the correlation between the returns on A and B decreases and becomes negative?

Homework Answers

Answer #1

Given about two stocks,

E(RA) = 0.15,

E(RB) = 0.25,

σA = 0.40,

σB = 0.65

Corr(A,B) = 0.5

a). WA = 0.40

WB = 0.60

Expected return of portfolio is E(RP) = WA*E(RA) + WB*E(RB) = 0.4*15 + 0.6*25 = 21%

standard deviation of the portfolio is SDp = SQRT((WAA)2 + (WBB)2 + 2*WAA*WB*σB*Corr(A,B))

SDp = SQRT((0.4*40)2 + (0.6*65)2 + 2*0.4*40*0.6*65*0.5) = 45.70% or 0.4570

b). As, correlation decreases and moves to negative, third term of the formula also turn negative. This will decrease the risk of the portfolio.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the expected returns and standard deviations of stocks A and B are E( RA )...
Suppose the expected returns and standard deviations of stocks A and B are E( RA ) = 0.15, E( RB ) = 0.21, σ A = 0.48, and σ B = 0.72, respectively. Required: (a) Calculate the expected return and standard deviation of a portfolio that is composed of 42 percent A and 58 percent B when the correlation between the returns on A and B is 0.46. (Round your answers to 2 decimal places. (e.g., 32.16))   Expected return %...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .080,...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .080, E(RB) = .140, σA = .350, and σB = .610. a-1. Calculate the expected return of a portfolio that is composed of 25 percent A and 75 percent B when the correlation between the returns on A and B is .40. (Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) Expected return 12.5 % a-2....
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .100,...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .100, E(RB) = .160, σA = .370, and σB = .630.    a-1. Calculate the expected return of a portfolio that is composed of 45 percent Stock A and 55 percent Stock B when the correlation between the returns on A and B is .60. (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) a-2....
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .094,...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .094, E(RB) = .154, σA = .364, and σB = .624. a-1. Calculate the expected return of a portfolio that is composed of 39 percent Stock A and 61 percent Stock B when the correlation between the returns on A and B is .54. (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) a-2. Calculate...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .098,...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .098, E(RB) = .158, σA = .368, and σB = .628.    a-1. Calculate the expected return of a portfolio that is composed of 43 percent Stock A and 57 percent Stock B when the correlation between the returns on A and B is .58. (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) a-2....
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .089,...
Suppose the expected returns and standard deviations of Stocks A and B are E(RA) = .089, E(RB) = .149, σA = .359, and σB = .619. a-1. Calculate the expected return of a portfolio that is composed of 34 percent Stock A and 66 percent Stock B when the correlation between the returns on A and B is .49. (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) a-2. Calculate...
Q9. The expected returns and standard deviations for stocks A and B are rA=14% and rB=19%,...
Q9. The expected returns and standard deviations for stocks A and B are rA=14% and rB=19%, respectively, and A=23% and B=34%, respectively. The correlation of the returns on the two stocks is AB=0.3. (a) What is the expected return, rP, and standard deviation, P, of a portfolio with weights of wA=0.60 and wB=0.40 in stocks A and B, respectively? (b) Suppose now ?? = 3%, and ?? = 7%, the portfolio had zero risk, that is suppose ?? = 0...
A and B are two risky assets. Their expected returns are E[Ra], E[Rb], and their standard...
A and B are two risky assets. Their expected returns are E[Ra], E[Rb], and their standard deviations are σA,σB. σA< σB and asset A and asset B are positively correlated (ρA, B > 0). Suppose asset A and asset B are comprised in a portfolio with positive weight in both and please check all the correct answers below. () There are only gains from diversification if ρA, B is not equal to 1. () The portfolio may have a zero...
Consider two risky securities, A and B. They have expected returns E[Ra], E[Rb], standard deviations σA,...
Consider two risky securities, A and B. They have expected returns E[Ra], E[Rb], standard deviations σA, σB. The standard deviation of A’s returns are lower than those of B (i.e. σA < σB and both assets are positively correlated (ρA,B > 0). Consider a portfolio comprised of positive weight in both A and B and circle all of the true statements below (there may be multiple true statements). (a) The expected return of this portfolio cannot exceed the average of...
2. What is the portfolio expected return and standard deviation? $4000 market value in stock A...
2. What is the portfolio expected return and standard deviation? $4000 market value in stock A with E(RA) = 12% and $6000 market value in stock B with E(RB) = 9%. The standard deviations (σ) and correlation (ρ) are: σA = 25% σB = 20% ρAB = 0.5 For a 2 stock portfolio, σ2port = wA2 σ2A + wB2 σ2B + 2 wA wB ρAB σA σB σport = (wA2 σ2A + wB2 σ2B + 2 wA wB ρAB σA...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT