Question

You are evaluating a European call option on a no-dividend paying stock that is currently priced...

You are evaluating a European call option on a no-dividend paying stock that is currently priced $42.05. The strike price for the option is $45, the risk-free rate is3% per year, the volatility is 18% per year, and the time to maturity is eleven months. Use the Black-Scholes model to determine the price of the option.

Homework Answers

Answer #1

Using Black Scholes model, we get the value of call option = $2.16 as shown in the figure above.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the price of a European call option on a non-dividend-paying stock when the stock...
What is the price of a European call option on a non-dividend-paying stock when the stock price is $52, the strike price is $50, the risk-free interest rate is 12% per annum, the volatility is 30% per annum, and the time to maturity is three months? (Hint: Remember Black- Sholes-Merton Model. Please refer to the N(d) tables provided to you to pick the N values you need)
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
What is the price of a European put option on a non-dividend-paying stock when the stock...
What is the price of a European put option on a non-dividend-paying stock when the stock price is $100, the strike price is $100, the risk-free interest rate is 8% per annum, the volatility is 25% per annum, and the time to maturity is 1 month? (Use the Black-Scholes formula.)
q 19 A non-dividend paying stock is currently trading at $60 and its volatility is 30%...
q 19 A non-dividend paying stock is currently trading at $60 and its volatility is 30% per annum. Risk free rate is 12% per annum. Consider a European put option with a strike price of $59 that will expire in three months. What is the price of this put option based on Black-Scholes model? (Enter your answer in two decimals without $ sign)
3) For a call option on a non dividend paying stock the stock price is $30,...
3) For a call option on a non dividend paying stock the stock price is $30, the strike price is $20, the risk free rate is 6% per annum, the volatility is 20% per annum    and the time to maturity is 3 months. Use the Binomial model to find:             a) The price of the call option? Please show work
3) For a call option on a non dividend paying stock the stock price is $30,...
3) For a call option on a non dividend paying stock the stock price is $30, the strike price is $20, the risk free rate is 6% per annum, the volatility is 20% per annum    and the time to maturity is 3 months. Use the Binomial model to find:             a) The price of the call option? Can you show the binomial model please
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the...
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the strike price is $29, and the continuously compounded risk-free interest rate is 6% per annum. The volatility of the stock price is 20% per annum. What is price of the call option according to the Black-Schole-Merton model? Please provide you answer in the unit of dollar, to the nearest cent, but without the dollar sign (for example, if your answer is $1.02, write 1.02).
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price...
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free interest rate is 5% per annum, the volatility is 25% per annum, and the time to maturity is four months. Assume that the stock is due to go ex-dividend in 1.5 months. The expected dividend is 50 cents. Using the Black-Scholes-Merton model, what is the price of the option if it is a European put?
Consider a European call option and a European put option on a non dividend-paying stock. The...
Consider a European call option and a European put option on a non dividend-paying stock. The price of the stock is $100 and the strike price of both the call and the put is $104, set to expire in 1 year. Given that the price of the European call option is $9.47 and the risk-free rate is 5%, what is the price of the European put option via put-call parity?  
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT