Compute the Black-Scholes price of a call. Suppose S=$100, K=$95, σ=30%, r=0.08, δ=0.03, and T=0.75.
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 100 | |||||
t = time to expiry = | 0.75 | |||||
K = Strike price = | 95 | |||||
r = Risk free rate = | 8.0% | |||||
q = Dividend Yield = | 3.0% | |||||
σ = Std dev = | 30% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(100/95)+(0.08-0.03+0.3^2/2)*0.75)/(0.3*0.75^(1/2)) | ||||||
d1 = 0.471669 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.471669-0.3*0.75^(1/2) | ||||||
d2 = 0.211861 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.681419 | ||||||
N(d1) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.583892 | ||||||
Value of call= 100*0.681419-0.583892*95*e^(-0.08*0.75) | ||||||
Value of call= 15.9 |
Get Answers For Free
Most questions answered within 1 hours.