Use the Black-Scholes formula for the following stock:
Time to expiration | 6 months | |
Standard deviation | 50% per year | |
Exercise price | $52 | |
Stock price | $50 | |
Annual interest rate | 3% | |
Dividend | 0 | |
Calculate the value of a put option. (Do not round intermediate calculations. Round your answer to 2 decimal places.)
1. Value of Put Option =
I NEED to see this worked out by hand (pen & paper) to understand and learn how to do it on my own without the use of excel. Please show all work in arriving at an answer. Thanks!
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 50 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 52 | |||||
r = Risk free rate = | 3.0% | |||||
q = Dividend Yield = | 0.0% | |||||
σ = Std dev = | 50% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(50/52)+(0.03-0+0.5^2/2)*0.5)/(0.5*0.5^(1/2)) | ||||||
d1 = 0.10827 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.10827-0.5*0.5^(1/2) | ||||||
d2 = -0.245283 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.543109 | ||||||
N(d1) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.403119 | ||||||
Value of call= 50*0.543109-0.403119*52*e^(-0.03*0.5) | ||||||
Value of call= 6.51 | ||||||
As per put call parity | ||||||
Call price + PV of exercise price = Spot price + Put price | ||||||
6.51+52/(1+0.03)^0.5=50+Put value | ||||||
Put value = 7.75 |
Get Answers For Free
Most questions answered within 1 hours.