Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the following inputs: (1) Current stock price is $21. (2) Strike price is $24. (3) Time to expiration is 5 months. (4) Annualized risk-free rate is 4%. (5) Variance of stock return is 0.17. Round your answer to the nearest cent. In your calculations round normal distribution values to 4 decimal places.
Please show step by step calculations in excel. Thank you
std dev = variance^(1/2) = 0.17^(1/2)=41.23%
time to expiry =5/12 = 0.41666 years
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 21 | |||||
t = time to expiry = | 0.41666 | |||||
K = Strike price = | 24 | |||||
r = Risk free rate = | 4% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 41.23% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(21/24)+(0.04-0+0.4123^2/2)*0.41666)/(0.4123*0.41666^(1/2)) | ||||||
d1 = -0.306049 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =-0.306049-0.4123*0.41666^(1/2) | ||||||
d2 = -0.572185 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.3798 | ||||||
N(d1) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.2836 | ||||||
Value of call= 21*0.3798-0.2836*24*e^(-0.04*0.41666) | ||||||
Value of call= 1.28 |
Get Answers For Free
Most questions answered within 1 hours.