Assume you have two investment opportunities.
Corporate Disasters (CD) has expected returns ?(?CD) = 4% and standard deviation of
returns 9%.
Nevada beach front properties (NBF) has expected returns ?(?NBF) = 10% and standard
deviation of returns 18%
Risk free rate is Rf = 1%.
a) Calculate Sharpe ratios of these two portfolios.
b) Assume you can invest only in one of those companies (and a risk free rate). Assume
your target rate of return is 6%. Calculate portfolios with CD&RF and NBF&RF which
would deliver this return. Which portfolio has smaller standard deviation and why?
c) Assume you have a portfolio which is not efficient. Assume Corporate Disasters have
market beta of ?CD = 0.5 and Nevada beach front
properties have market beta
?NBF = 4. Calculate Treynor measures for those
securities. Which one should you add to
your portfolio to increase the Sharpe ratio.
a) Sharp Index = (Portfolio average return - Risk free rate of interest) / Strandard deviation of the portfolio return
Corporate disasters(CD) Sharp index= (4%-1%)/9% = 0.3333
Nevada beach front properties (NBF) Sharp index= (10%-1%)/18% = 0.5
b) Portfolio with Corporate disasters(CD)= target return/CD return =6%/4% =1.5 CD
Risk of portfolio CD = 1.5 * standard deviation CD = 1.5*9% = 13.5%
Portfolio with Nevada beach front properties (NBF) = target return/NBF return =6%/10% =0.6 CD
Risk of portfolio Nevada beach front properties (NBF) = .6 * standard deviation NBF = .6*18% = 10.8%
So,Portfolio with Nevada beach front properties having smaller standard deviation while comparing with Portfolio with Corporate disasters(CD).
c)Treynor Index = (Portfolio average return - Risk free rate of interest) / Beta of the portfolio
Corporate disasters(CD) Treynor Index = (4%-1%)/.5 = 6
Nevada beach front properties (NBF) Treynor Index = (10%-1%)/4 = 2.25
Get Answers For Free
Most questions answered within 1 hours.