Question

Use the Black-Scholes model to find the value for a European put option that has an...

Use the Black-Scholes model to find the value for a European put option that has an exercise price of $49.00 and 0.4167 years to expiration. The underlying stock is selling for $40.00 currently and pays an annual dividend yield of 0.01. The standard deviation of the stock’s returns is 0.4400 and risk-free interest rate is 0.06. (Round your final answer to 2 decimal places. Do not round intermediate calculations.)

Put value            $ ?

Homework Answers

Answer #1

d1 = [{ln(S0/X)} + {t(r - q + 2/2)}] / [(t)1/2]

    = [{ln(40/49)} + {0.4167(0.06 - 0.01 + 0.442/2)}] / [0.44(0.4167)1/2]

    = -0.1418 / 0.2840 = -0.4991

d2 = d1 - [(t)1/2]

    = -0.4991 - [0.44(0.4167)1/2]
= -0.4991 - 0.2840 = -0.7832

P = [X x e-rt x N(-d2)] - [S0 x e-qt x N(-d1)]

   = [49 x e-0.06*0.4167x N(0.7832)] - [40 x e-0.01*0.4167 x N(0.4991)]

= [49e-0.06*0.4167 x 0.7832] - [40 x 0.6912]

   = 37.43 - 27.65 = 9.78, or $9.78

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the...
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28 Call value            $
Calculate the price of a European call option using the Black Scholes model and the following...
Calculate the price of a European call option using the Black Scholes model and the following data: stock price = $56.80, exercise price = $55, time to expiration = 15 days, risk-free rate = 2.5%, standard deviation = 22%, dividend yield = 8%.
Use the Black-Scholes formula to find the value of a call option based on the following...
Use the Black-Scholes formula to find the value of a call option based on the following inputs. (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 12.00 Exercise price $ 5.00 Interest rate 5.00 % Dividend yield 4.00 % Time to expiration 0.4167 Standard deviation of stock’s returns 31.00 % Call value            $
Use the Black-Scholes formula to find the value of a call option based on the following...
Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28
Using the Black-Scholes option valuation, calculate the value of a put option under the following parameters:...
Using the Black-Scholes option valuation, calculate the value of a put option under the following parameters: The underlying stock's current market price is $40; the exercise price is $35; the time to expiry is 6 months; the standard deviation is 0.31557; and the risk free rate of return is 8%. A. $8.36 B. $1.04 C. $6.36 D. $2.20 The current market price of one share of ABC, Inc. stock is $62. European style put and call options with a strike...
3.3 In the Black-Scholes option-pricing model, if volatility increases, the value of a call option will...
3.3 In the Black-Scholes option-pricing model, if volatility increases, the value of a call option will increase but the value of the put option will decrease. (True / False) 3.4 The Black-Scholes option pricing model assumes which of the following? Jumps in the underlying price Constant volatility of the underlying Possibility of negative underlying price Interest rate increasing as option nears expiration
Which of the inputs in the Black-Scholes-Merton option pricing model are directly observable? The price of...
Which of the inputs in the Black-Scholes-Merton option pricing model are directly observable? The price of the underlying security The risk-free rate of interest The time to expiration The variance of returns of the underlying asset return The price of the underlying security, risk-free rate of interest, and time to expiration
. Use the Black-Scholes model to find the price for a call option with the following...
. Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $45, (2) exercise price is $50, (3) time to expiration is 3 months, (4) annualized risk-free rate is 3%, and (5) variance of stock return is 0.50. . Using the information from question above, find the value of a put with a $50 exercise price.
7. Use the Black -Scholes formula to find the value of a call option on the...
7. Use the Black -Scholes formula to find the value of a call option on the following stock: Time to expiration = 6 months Standard deviation = 50% per year Exercise price = $50 Stock price = $50 Interest rate = 3% Dividend = 0 8. Find the Black -Scholes value of a put option on the stock in the previous problem with the same exercise price and expiration as the call option. NEED HELP WITH NUMBER 8
A put option maturing in 6 months is priced using the Black-Scholes model. Strike price is...
A put option maturing in 6 months is priced using the Black-Scholes model. Strike price is 105, current price is 111 and the stock pays no dividend value of d2= .390 and the current risk-free interest rate is 4%. The price of the put option is 4.45. Calculate the delta (Δ) of the put option? Show work please.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT