4. Problem 18.04 (Black-Scholes Model)
Assume that you have been given the following information on Purcell Industries:
Current stock price = $16 | |
Exercise price of option = $16 | |
Time until expiration of option = 6 months | |
Risk-free rate = 11% | |
Variance of stock price = 0.07 | |
= 0.38753 | |
= 0.20045 | |
= 0.65082 | |
= 0.57943 | |
Using the Black-Scholes Option Pricing Model, what is the value of the option? Round intermediate calculations to 4 decimal places. Round you answer to the nearest cent.
$
std dev = var^(1/2) = 0.07^(1/2) = 26.45%
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 16 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 16 | |||||
r = Risk free rate = | 11.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 26% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(16/16)+(0.11-0+0.2645^2/2)*0.5)/(0.2645*0.5^(1/2)) | ||||||
d1 = 0.387586 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.387586-0.2645*0.5^(1/2) | ||||||
d2 = 0.200556 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.650839 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.579477 | ||||||
Value of call= 16*0.650839-0.579477*16*e^(-0.11*0.5) | ||||||
Value of call= 1.64 |
Get Answers For Free
Most questions answered within 1 hours.