Question

Stocks A and B have the following probability distributions of expected future returns: Probability A B...

Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.2 (5%) (23%), 0.3 6 0, 0.2 11 24, 0.2 20 27, 0.1 35 50

A. Calculate the expected rate of return, , for Stock B ( = 10.50%.) Do not round intermediate calculations. Round your answer to two decimal places. %

B. Calculate the standard deviation of expected returns, σA, for Stock A (σB = 22.46%.) Do not round intermediate calculations. Round your answer to two decimal places. %

Now calculate the coefficient of variation for Stock B. Round your answer to two decimal places.

Is it possible that most investors might regard Stock B as being less risky than Stock A?

  1. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
  2. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
  3. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
  4. If Stock B is more highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be less risky in a portfolio sense.
  5. If Stock B is more highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.

C. Assume the risk-free rate is 3.0%. What are the Sharpe ratios for Stocks A and B? Do not round intermediate calculations. Round your answers to two decimal places.

Stock A:

Stock B:

Are these calculations consistent with the information obtained from the coefficient of variation calculations in Part b?

  1. In a stand-alone risk sense A is less risky than B. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
  2. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
  3. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
  4. In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
  5. In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.

Homework Answers

Answer #1

Expected Return of Stock B =0.2*-23%+0.3*0%+0.2*24%+0.2*27%+0.1*50% =10.60%

B. Standard Deviation of Stock A =(0.2*(-5%-10.50%)^2+0.3*(6%-10.50%)^2+0.2*(11%-10.50%)^2+0.2*(20%-10.50%)+0.1*(35%-10.50%)^2)^0.5 =17.44%

C. Coefficient of Variation of B =Standard Deviation/Expected return =22.46%/10.60% =2.12

d. Option III is correct option If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.

e.Option II is correct option In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Stocks A and B have the following probability distributions of expected future returns: Probability A B...
Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.4 (7%) (35%) 0.2 2 0 0.1 11 18 0.1 24 30 0.2 35 44 Calculate the expected rate of return, , for Stock B ( = 8.10%.) Do not round intermediate calculations. Round your answer to two decimal places. % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 31.61%.) Do not round intermediate calculations. Round your answer to...
Stocks A and B have the following probability distributions of expected future returns: Probability A B...
Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.4 (11%) (28%) 0.2 3 0 0.1 15 23 0.1 23 26 0.2 36 45 Calculate the expected rate of return, , for Stock B ( = 7.20%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 28.84%.) Do not round intermediate calculations. Round your answer to...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (15 %) (37 %) 0.1 4 0 0.5 14 23 0.2 19 27 0.1 39 37 Calculate the expected rate of return, , for Stock B ( = 13.60%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 19.96%.) Do not round intermediate calculations. Round your...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (7 %) (21 %) 0.1 5 0 0.5 10 23 0.2 18 30 0.1 30 49 Calculate the expected rate of return,  , for Stock B (= 11.40%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 17.79%.) Do not round intermediate calculations. Round your answer to...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (7 %) (29 %) 0.1 6 0 0.5 16 22 0.2 24 30 0.1 31 42 Calculate the expected rate of return, , for Stock B ( = 15.80%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 18.64%.) Do not round intermediate calculations. Round your...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (13%) (31%) 0.2 5 0 0.5 14 24 0.1 20 26 0.1 32 44 Calculate the expected rate of return,  , for Stock B ( = 11.90%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 19.81%.) Do not round intermediate calculations. Round your answer to two...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (15 %) (30 %) 0.1 3 0 0.5 14 23 0.2 18 26 0.1 36 47 Calculate the expected rate of return, , for Stock B ( = 13.00%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 19.29%.) Do not round intermediate calculations. Round your...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (6 %) (21 %) 0.2 6 0 0.5 15 22 0.1 24 29 0.1 35 36 Calculate the expected rate of return, , for Stock B ( = 14.00%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 16.21%.) Do not round intermediate calculations. Round your...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B...
Stocks A and B have the following probability distributions of expected future returns: Probability     A     B 0.1 (12 %) (31 %) 0.1 5 0 0.6 11 22 0.1 18 25 0.1 37 48 Calculate the expected rate of return,  , for Stock B ( = 11.40%.) Do not round intermediate calculations. Round your answer to two decimal places.   % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 19.41%.) Do not round intermediate calculations. Round your answer...
Stocks A and B have the following probability distributions of expected future returns: Probability A B...
Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.1 (7%) (35%) 0.2 3 0 0.3 12 19 0.2 20 30 0.2 32 46 Calculate the expected rate of return, rB, for Stock B (rA = 13.90%.) Do not round intermediate calculations. Round your answer to two decimal places. % Calculate the standard deviation of expected returns, σA, for Stock A (σB = 23.05%.) Do not round intermediate calculations. Round your answer to...