Consider the following information: |
Rate of Return if State Occurs | ||||||||||||||||||||||||||||
State of Economy | Probability of State of Economy | Stock A | Stock B | |||||||||||||||||||||||||
Recession | 0.10 | 0.03 | -0.18 | |||||||||||||||||||||||||
Normal | 0.50 | 0.08 | 0.16 | |||||||||||||||||||||||||
Boom | 0.40 | 0.13 | 0.31 | |||||||||||||||||||||||||
|
Expected return=Respective return*Respective probability
Expected return for A=(0.1*3)+(0.5*8)+(0.4*13)=9.50%
Probability | Return | Probability*(Return-Mean)^2 |
0.1 | 3 | 0.1*(3-9.5)^2=4.225 |
0.5 | 8 | 0.5*(8-9.5)^2=1.125 |
0.4 | 13 | 0.4*(13-9.5)^2=4.9 |
Total=10.25% |
Standard deviation for A=[Total Probability*(Return-Mean)^2/Total probability]^(1/2)
which is equal to
=3.20%(Approx).
Expected return for B=(0.1*-18)+(0.5*16)+(0.4*31)=18.60%
Probability | Return | Probability*(Return-Mean)^2 |
0.1 | -18 | 0.1*(-18-18.6)^2=133.956 |
0.5 | 16 | 0.5*(16-18.6)^2=3.38 |
0.4 | 31 | 0.4*(31-18.6)^2=61.504 |
Total=198.84% |
Standard deviation for B=[Total Probability*(Return-Mean)^2/Total probability]^(1/2)
which is equal to
=14.10%(Approx)
Get Answers For Free
Most questions answered within 1 hours.