Question

Use Black-Scholes to find the price for a put with 3 months to maturity. The exercise...

Use Black-Scholes to find the price for a put with 3 months to maturity. The exercise price is $75. The risk-free interest rate is 2.75% with continuous compounding. The stock price is $72. The historic VARIANCE is 0.0256. NOTE: Use the Black-Scholes template for this problem.

Homework Answers

Answer #1
S = Current Stock Price = $72
t = time until option maturity (years) = 3/12 = 0.25 years
K = Option Strike Price = $75
r = risk free rate(annual) = 0.0275
s = standard deviation(annual) = sqrt(variance) = sqrt(0.0256) = 0.16
N = cumulative standard normal distribution
d1 = {ln (S/K) + (r +s^2/2)t}/s√t
= {ln (72/75) + (0.0275 + 0.16^2/2)*0.25}/0.16*√0.25
= -0.384300
d2 = d1 - s√t
= -0.3843 - 0.16√0.25
= -0.4643
Using z tables,
N(d1) = 0.3504
N(d2) = 0.3212
C = Call Premium = =SN(d1) - N(d2)Ke^(-rt)
= 72*0.3504 - 0.3212*75e^(-0.0275*0.25)
= 1.3039
N(-d1) = 0.6496
N(-d2) = 0.6788
P = Put Premium = =N(-d2)Ke^(-rt) - SN(-d1)
= 0.6788*75e^(-0.0275*0.25) - 72*0.6496
= 3.79

Hence, value of Put option = $3.79

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Use the Black-Scholes model to find the price for a call option with the following...
. Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $45, (2) exercise price is $50, (3) time to expiration is 3 months, (4) annualized risk-free rate is 3%, and (5) variance of stock return is 0.50. . Using the information from question above, find the value of a put with a $50 exercise price.
7. Use the Black -Scholes formula to find the value of a call option on the...
7. Use the Black -Scholes formula to find the value of a call option on the following stock: Time to expiration = 6 months Standard deviation = 50% per year Exercise price = $50 Stock price = $50 Interest rate = 3% Dividend = 0 8. Find the Black -Scholes value of a put option on the stock in the previous problem with the same exercise price and expiration as the call option. NEED HELP WITH NUMBER 8
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the...
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the following inputs: (1) Current stock price is $21. (2) Strike price is $24. (3) Time to expiration is 5 months. (4) Annualized risk-free rate is 4%. (5) Variance of stock return is 0.17. Round your answer to the nearest cent. In your calculations round normal distribution values to 4 decimal places. Please show step by step calculations in excel. Thank you
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price...
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price the following options: European call with strike price of $72 and one year to maturity on a non-dividend-paying stock trading at $65 with volatility of 40%. European put with strike price of $65 and one year to maturity on a non-dividend-paying stock trading at $72 with volatility of 40%
Use the Black-Scholes model to find the value for a European put option that has an...
Use the Black-Scholes model to find the value for a European put option that has an exercise price of $49.00 and 0.4167 years to expiration. The underlying stock is selling for $40.00 currently and pays an annual dividend yield of 0.01. The standard deviation of the stock’s returns is 0.4400 and risk-free interest rate is 0.06. (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Put value            $ ?
A put option maturing in 6 months is priced using the Black-Scholes model. Strike price is...
A put option maturing in 6 months is priced using the Black-Scholes model. Strike price is 105, current price is 111 and the stock pays no dividend value of d2= .390 and the current risk-free interest rate is 4%. The price of the put option is 4.45. Calculate the delta (Δ) of the put option? Show work please.
Use the Black-Scholes formula to value the following options: a. A Call option written on a...
Use the Black-Scholes formula to value the following options: a. A Call option written on a stock selling for $100 per share with a $110 exercise price. The stock's standard deviation is 15% per quarter. The option matures in three months. The risk free interest is 3% per quarter. b. A put option written on the same stock at the same time, with the same exercise price and expiration date. Now for each of these options find the combination of...
Use the Black-Scholes model to find the price for a call option with the following inputs:...
Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $30, (2) strike price is $37, (3) time to expiration is 3 months, (4) annualized risk-free rate is 5%, and (5) variance of stock return is 0.16. Do not round intermediate calculations. Round your answer to the nearest cent. $ ?????? PLEASE SHOW THE FORMULA!! Thank you :)
Question 34 Black-Scholes Option-Pricing S 45 Current stock price X 50 Exercise price r 5.00% Risk-free...
Question 34 Black-Scholes Option-Pricing S 45 Current stock price X 50 Exercise price r 5.00% Risk-free rate of interest T 9 months Time to maturity of option Variance 6.308% Stock volatility 1. Call option price = 4.63 2. Call option price = 2.83 3. Call option price = 2.93 4. Call option price = 2.63 5. None of Above
stock price 42.27 strike 40 maturity 26 days risk free 4.92% volatility 45.75% use black scholes...
stock price 42.27 strike 40 maturity 26 days risk free 4.92% volatility 45.75% use black scholes in excel to comput the call and put option value
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT