Question

PLEASE SOLVE THE B. (Option valuation) A stock price is currently 40€. It is known that...

PLEASE SOLVE THE B.

(Option valuation) A stock price is currently 40€. It is known that at the end of 1 month it will be either 42€ or 38€. The risk-free interest rate is 8% per annum with continuous compunding. a. What is the value of a 1-month European call option with a strike price of 39€? = 1,69€

b. USE PUT-CALL PARITY TO SOLVE THE VALUATION OF THE CORRESPONDING PUT OPTION.

Homework Answers

Answer #1
Current market price = 40.00€
Risk free interest rate per annum = 8%
Period = 1 month
One month interest rate = 8/12= 0.67% or 0.0067
Value of call option = 1.69€
As per put call parity =

Current market price + Put option value = P.v. of STRIKE PRICE + call option value

As per formula

40 + Put option value =

( 39 / (1+0.0067) ) + 1.69

Put option value = 38.74172185 +1.69-40
Put option value = 0.43€

So, value of put option is 0.43€

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock price is currently $40. It is known that at the end of three months...
A stock price is currently $40. It is known that at the end of three months it will be either $42 or $38. The risk free rate is 8% per annum with continuous compounding. What is the value of a three-month European call option with a strike price of $39? In three months: S0 = $40 X = $39, r = 8% per annum with continuous compounding. Use one step binomial model to compute the call option price. In particular,...
A stock price is currently $50. It is known that at the end of 3 months...
A stock price is currently $50. It is known that at the end of 3 months it will be either $50 or $48. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a 3-month European put option with a strike price of $49? How about a 6-month European call price? (Hint: 2 period binomial option pricing)
A stock price is currently $40. It is known that at the end of one month...
A stock price is currently $40. It is known that at the end of one month that the stock price will either increase or decrease by 9%. The risk-free interest rate is 9% per annum with continuous compounding. What is the value of a one-month European call option with a strike price of $40? Equations you may find helpful: p = (e^(rΔt)-d) / (u-d) f = e^(-rΔt) * (fu*p + fd*(1-p)) (required precision 0.01 +/- 0.01)
A stock price is currently $180. It is known that it will be either $207 or...
A stock price is currently $180. It is known that it will be either $207 or $153 at the end of 3 months. The risk-free interest rate is 2% per annum with continuous compounding. What is the value of the 3- month European stock put option (with a strike price of $175)?
A stock price is currently $40. It is known that at the end of three months...
A stock price is currently $40. It is known that at the end of three months it will be either $45 or $35. The risk-free rate of interest with quarterly compounding is 8% per annum. Calculate the value of a three-month European put option on the stock with an exercise price of $40. Verify that no-arbitrage arguments and risk-neutral valuation arguments give the same answers
►A stock price is currently $50. It is known that at the end of six months...
►A stock price is currently $50. It is known that at the end of six months it will be either $46 or $54. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $48? What is the value of a six-month American put option with a strike price of $48?
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by10%. The risk-free interest rate is 12% per annum with continuous compounding. (a) What is the value of a six-month European put option with a strike price of $42? (b) What is the value of a six-month American put option with strike price of $42?
Suppose that a 6-month European call A option on a stock with a strike price of...
Suppose that a 6-month European call A option on a stock with a strike price of $75 costs $5 and is held until maturity, and 6-month European call B option on a stock with a strike price of $80 costs $3 and is held until maturity. The underlying stock price is $73 with a volatility of 15%. Risk-free interest rates (all maturities) are 10% per annum with continuous compounding. Use put-call parity to explain how would you construct a European...
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $42? What is the value of a six-month American put option with a strike price of $42? What is the value of a six-month American put option with...
a. What is a lower bound for the price of a five-month call option on a...
a. What is a lower bound for the price of a five-month call option on a non-dividend-paying stock when the stock price is $42, the strike price is $38, and the continuously compounded risk-free interest rate is 8% per annum? b. What is a lower bound for the price of a four-month European put option on a non-dividend- paying stock when the stock price is $31, the strike price is $35, and the continuously compounded risk-free interest rate is 7%...