Question

Suppose that you own a call option on a non-dividend paying stock with a strike price...

Suppose that you own a call option on a non-dividend paying stock with a strike price of $40 that will expire in three months. The current stock price is $60, and the three-month risk-free rate of interest is 4% with continuous compounding. Suppose that you short the stock and invest the proceeds for three months. What is the value of your combined position in the call, the stock, and the investment in three months if the stock price is greater than $40? What is the value of your combined position as a function of the stock price in three months if the stock price is less than $40?

Homework Answers

Answer #1

Suppose the stock price after 3 months happens to be $50. So the call is excersised in the favour of the buyer, i.e. the buyer can now buy the stock at $40 (strike price).

After 3 months the profit to the buyer is as follows :

Settle the long position in the option by buying the stock : ($40)

Deliver the stock to close the short position : $0

Recieve investment proceeds 60 *(1.04)3/12 :        $ 60.59 (approx)

Therefore profit to the buyer = $20.59 (60.59 - 40)

Suppose the stock price after 3 months happent to be $35. The call is lapsed and the buyer can buy the stock from the market at $35.

After 3 monts the profit to the buyer is as follows :

Buy the stock from the market and close the short position : ($35)

Recieve investment proceeds 60 *(1.04)3/12 : $ 60.59 (approx)

Therefore profit to the long = $25.59 (60.59 - 30)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that you own an American put option on a non-dividend paying stock with a strike...
Suppose that you own an American put option on a non-dividend paying stock with a strike price of $50 that will expire in six months. The current stock price is $1, and the six-month risk- free rate of interest is 5% with continuous compounding (a) If you exercise the put today and invest the proceeds, how much will you have in six-months? (b) What is the maximum payoff you can obtain if you keep the option until expiration? Explain.
The price of a European call option on a non-dividend-paying stock with a strike price of...
The price of a European call option on a non-dividend-paying stock with a strike price of $50 is $6. The stock price is $51, the continuously compounded risk-free rate (all maturities) is 6% and the time to maturity is one year. What is the price of a one-year European put option on the stock with a strike price of $50? a)$9.91 b)$7.00 c)$6.00 d)$2.09
3) For a call option on a non dividend paying stock the stock price is $30,...
3) For a call option on a non dividend paying stock the stock price is $30, the strike price is $20, the risk free rate is 6% per annum, the volatility is 20% per annum    and the time to maturity is 3 months. Use the Binomial model to find:             a) The price of the call option? Can you show the binomial model please
Consider a European call option and a European put option on a non dividend-paying stock. The...
Consider a European call option and a European put option on a non dividend-paying stock. The price of the stock is $100 and the strike price of both the call and the put is $104, set to expire in 1 year. Given that the price of the European call option is $9.47 and the risk-free rate is 5%, what is the price of the European put option via put-call parity?  
Today’s price of a non-dividend paying stock is $60. Use a two-step tree to value a...
Today’s price of a non-dividend paying stock is $60. Use a two-step tree to value a European call option on the stock with a strike price of $60 that expires in 6 months. Each step is 3 months. The risk free rate is 5% per annum with continuous compounding. Assume that the option is written on 100 shares of stock, and that u = 1.15 and d = 0.85. A)What is the option price today? B) How would you hedge...
A 1-month European call option on a non-dividend-paying-stock is currently selling for $3.50. The stock price...
A 1-month European call option on a non-dividend-paying-stock is currently selling for $3.50. The stock price is $100, the strike price is $95, and the risk-free interest rate is 6% per annum with continuous compounding. Is there any arbitrage opportunity? If "Yes", describe your arbitrage strategy using a table of cash flows. If "No or uncertain", motivate your answer.
3) For a call option on a non dividend paying stock the stock price is $30,...
3) For a call option on a non dividend paying stock the stock price is $30, the strike price is $20, the risk free rate is 6% per annum, the volatility is 20% per annum    and the time to maturity is 3 months. Use the Binomial model to find:             a) The price of the call option? Please show work
What is the price of a European call option on a non-dividend-paying stock when the stock...
What is the price of a European call option on a non-dividend-paying stock when the stock price is $52, the strike price is $50, the risk-free interest rate is 12% per annum, the volatility is 30% per annum, and the time to maturity is three months? (Hint: Remember Black- Sholes-Merton Model. Please refer to the N(d) tables provided to you to pick the N values you need)
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to...
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to value a European call option on the stock with a strike price of $88 that expires in 6 months. Each step is 3 months, the risk free rate is 5% per annum with continuous compounding. What is the option price when u = 1.2 and d = 0.8? Assume that the option is written on 100 shares of stock.
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the...
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the strike price is $40, the risk-free rate is 4% per annum, the volatility is 30% per annum, and the time to maturity is 6 months. (a) Calculate u, d, and p for a two-step tree. (b) Value the option using a two-step tree. (c) Verify that DerivaGem gives the same answer. (d) Use DerivaGem to value the option with 5, 50, 100, and 500...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT