Question

Assuming current stock price of ABC Company is $100. Over each of the next two six-month...

Assuming current stock price of ABC Company is $100. Over each of the next two six-month periods, the price is expected to go up by 10% or down by 10% during each six-month period. The risk-free interest rate is 8% per annum with annual compounding. Required:

a. Calculate the option premium for a one-year European call option with an exercise price of $80. Show your calculation steps.

b. Using the option premium calculated in Part a of Question 9, estimate the premium of a one-year European put option that has the same exercise price and the same expiration date.

Homework Answers

Answer #1

We use replicating portfolio approach to find call option premium

S= 100

Su= 100+10% = 110

SD= 100-10% = 90

Strike price is 80

Risk free rate is 8% for 6 months is 4%

Cu(value of call at su) = 110-80 = 30

Cd(value of call at sd) = 90-80 = 10

Value of call = delta (s)-B

Where Delta is no of shares to be bought to replicate portfolio

B is amount to be borrowed

Delta= (cu-cd)/(su-sd) = (30-10)/(110-90)

= 1

B=(cusd-cdsu)/(su-sd)(1+r)

= (30×90-10×110)/((110-90)(1.04))

= 76.923

Value of call is = 1(100)-76.923 = 23.077

Premium on call option = 23.077

B) we will value put using put call parity

We have

C+pv(x) = p + s

Where x is strike price

23.077 + 80/(1.04) = p + 100

P= 100-100 = 0

So value of put is 0 from put call parity

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock price is currently $100. Over each of the next two six-month periods, it is...
A stock price is currently $100. Over each of the next two six-month periods, it is expected to go up by 10% or down by 10%. The risk-free interest rate is 10% per year with semi-annual compounding. Part I. Use the two-steps binomial tree model to calculate the value of a one-year American put option with an exercise price of $101. Part II. Is there any early exercise premium contained in price of the above American put option? If there...
The stock price is currently $110. Over each of the next two six-month periods, it is...
The stock price is currently $110. Over each of the next two six-month periods, it is expected to go up by 12% or down by 12%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a one-year European call option with a strike price of $100?
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $42? What is the value of a six-month American put option with a strike price of $42? What is the value of a six-month American put option with...
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by10%. The risk-free interest rate is 12% per annum with continuous compounding. (a) What is the value of a six-month European put option with a strike price of $42? (b) What is the value of a six-month American put option with strike price of $42?
A stock price is currently 100. Over each of the next to six months periods it...
A stock price is currently 100. Over each of the next to six months periods it is expected to go up by 10% or down by 10%. the risk free interest rate is 8% per annum. What is the value of the European call and put options with a strike price of 100? Verify that the put call parity is satisfied.
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 8% with a probability of 50% or down by 4% with a probability of 50%. The risk-free interest rate is 4% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $50? Use binomial tree method to solve this problem.
A price on a non-dividend paying stock is currently £50. Over each of the next two...
A price on a non-dividend paying stock is currently £50. Over each of the next two six-month periods the stock is expected to go up by 5% or down by 10%. The risk- free interest rate is 3% per annum with continuous compounding. (a) What is the value of a one-year European call option with a strike price of £48? [10 marks] (b) What is the value of a one-year American call option with a strike price of £48? [4...
A stock price is currently $100. Over each of the next two 3-month periods it is...
A stock price is currently $100. Over each of the next two 3-month periods it is expected to go up or go down with up-factor u and down-factor d. The risk-free interest rate is 6% per annum with continuously compounding. Consider a 6-month American put option with a strike price of K. Find the price of this American put option. Motivate your solutions, discuss early exercising decisions at each nodes prior to the maturity. K = 100, u = 1.3,...
The price of a non-dividend paying stock is $45 and the price of a six-month European...
The price of a non-dividend paying stock is $45 and the price of a six-month European call option on the stock with a strike price of $46 is $1. The risk-free interest rate is 6% per annum. The price of a six-month European put option is $2. Both put and call have the same strike price. Is there an arbitrage opportunity? If yes, what are your actions now and in six months? What is the net profit in six months?
Suppose that a 6-month European call A option on a stock with a strike price of...
Suppose that a 6-month European call A option on a stock with a strike price of $75 costs $5 and is held until maturity, and 6-month European call B option on a stock with a strike price of $80 costs $3 and is held until maturity. The underlying stock price is $73 with a volatility of 15%. Risk-free interest rates (all maturities) are 10% per annum with continuous compounding. Use put-call parity to explain how would you construct a European...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT