Consider a project with free cash flows in one year is $90,000 in a weak economy or $117,000 in a strong economy, with each outcome being equally likely. The initial investment required for the project is $80,000, and the project's cost of capital is 15%. The risk-free interest rate is 5%.
Suppose that you borrow $60,000 in financing the project. According to the MM proposition II, the firm's equity cost of capital will be closest to:
a. 45%
b. 30%
c. 25%
d. 35%
First we will calculate the value of firms total cash flow :
PV(equity cash flows - unlevered) = [(0.5 * $90,000) + (0.5 * $117,000)] / 1.15 = $90,000
According to MM Proposition II, rE = rU + D/E (rU -rD)
where,
rE = Cost of Equity
rU = Cost of Capital / Project
D = Firms Debt
E = Firms Equity
rD = Cost of Debt
Here, the Debt portion is $60,000 (given) and value of firms total cash flow = $90,000 (as calculated above). So if we borrow $60,000, firms equity will be worth $30,000 ($90,000 - $60,000).
Therefore, rE = 0.15 + [$60,000 / ($90,000 - $60,000)]*(0.15 - 0.05) = 0.35 or 35% i.e option d.
Get Answers For Free
Most questions answered within 1 hours.