Question

A stock price is currently $40. It is known that at the end of one month...

A stock price is currently $40. It is known that at the end of one month that the stock price will either increase or decrease by 9%. The risk-free interest rate is 9% per annum with continuous compounding. What is the value of a one-month European call option with a strike price of $40? Equations you may find helpful: p = (e^(rΔt)-d) / (u-d) f = e^(-rΔt) * (fu*p + fd*(1-p)) (required precision 0.01 +/- 0.01)

Homework Answers

Answer #1

Current Market price Down Price Up Price Exercise Price p = 40 36.4 43.6 40 Probability eart =2.7183^0.09*1/12 =down price/current price =up price / current price d = u = 1.01 0.910 1.090 p=r-d/u-d =1.0075-0.91/1.09-0.91 =0.5418 -0.5418 43.6 Cu= payoff = 43.6-40=3.6 36.4 Cd=0 Cu = Payoff if option exercise Cd = Payoff if option is not exercise

Value of call option =(Cu*p)+Cd*(1-P)/R = (3.6*0.5418)+0 *(1-0.5418)/1.03 = 1.89

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stock price is currently $40. It is known that at the end of three months...
A stock price is currently $40. It is known that at the end of three months it will be either $42 or $38. The risk free rate is 8% per annum with continuous compounding. What is the value of a three-month European call option with a strike price of $39? In three months: S0 = $40 X = $39, r = 8% per annum with continuous compounding. Use one step binomial model to compute the call option price. In particular,...
A stock price is currently $50. It is known that at the end of 3 months...
A stock price is currently $50. It is known that at the end of 3 months it will be either $50 or $48. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a 3-month European put option with a strike price of $49? How about a 6-month European call price? (Hint: 2 period binomial option pricing)
►A stock price is currently $50. It is known that at the end of six months...
►A stock price is currently $50. It is known that at the end of six months it will be either $46 or $54. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $48? What is the value of a six-month American put option with a strike price of $48?
PLEASE SOLVE THE B. (Option valuation) A stock price is currently 40€. It is known that...
PLEASE SOLVE THE B. (Option valuation) A stock price is currently 40€. It is known that at the end of 1 month it will be either 42€ or 38€. The risk-free interest rate is 8% per annum with continuous compunding. a. What is the value of a 1-month European call option with a strike price of 39€? = 1,69€ b. USE PUT-CALL PARITY TO SOLVE THE VALUATION OF THE CORRESPONDING PUT OPTION.
A stock price is currently $180. It is known that it will be either $207 or...
A stock price is currently $180. It is known that it will be either $207 or $153 at the end of 3 months. The risk-free interest rate is 2% per annum with continuous compounding. What is the value of the 3- month European stock put option (with a strike price of $175)?
A stock price is currently $40. It is known that at the end of three months...
A stock price is currently $40. It is known that at the end of three months it will be either $45 or $35. The risk-free rate of interest with quarterly compounding is 8% per annum. Calculate the value of a three-month European put option on the stock with an exercise price of $40. Verify that no-arbitrage arguments and risk-neutral valuation arguments give the same answers
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by10%. The risk-free interest rate is 12% per annum with continuous compounding. (a) What is the value of a six-month European put option with a strike price of $42? (b) What is the value of a six-month American put option with strike price of $42?
A stock price is currently $50. It is known that at the end of two months...
A stock price is currently $50. It is known that at the end of two months it will be either $53 or $48. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a two-month European call option with a strikeprice of $49? Use no-arbitrage arguments. At the end of two months the value of the option will be either $4 (if the stock price is $53) or $0 (if the stock price is...
The stock price is currently $110. Over each of the next two six-month periods, it is...
The stock price is currently $110. Over each of the next two six-month periods, it is expected to go up by 12% or down by 12%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a one-year European call option with a strike price of $100?
Suppose that a 6-month European call A option on a stock with a strike price of...
Suppose that a 6-month European call A option on a stock with a strike price of $75 costs $5 and is held until maturity, and 6-month European call B option on a stock with a strike price of $80 costs $3 and is held until maturity. The underlying stock price is $73 with a volatility of 15%. Risk-free interest rates (all maturities) are 10% per annum with continuous compounding. Use put-call parity to explain how would you construct a European...