Question

Multi Step Binomial Tree: Consider again the at-the-money European call option with one year left to...

Multi Step Binomial Tree: Consider again the at-the-money European call option with one year left to maturity written on a non-dividend paying stock. As in exercise 2, let today’s stock price be 80 kr, the stock volatility be 30% and the risk free interest rate be 6%.

(a) Construct a one-year, five-step Binomial tree for the stock and calculate today’s price of the European at-the-money call.

(c) The option can be replicated by a portfolio consisting of the stock and a risk-free asset. What is the replicating portfolio strategy of the call?

(d) Explain how the delta should change, as the stock price increase and check if this is indeed the case in your tree.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
please draw a one step binomial tree to price a European call option with the following...
please draw a one step binomial tree to price a European call option with the following parameters: the time t =1 refers to one year Inputs: s = 50, k = 50, t = 1, v = 0.5, r = 0.05, y = 0, n = 1 please show how the answer is 13.17 using the Cox Ross & Rubinstein binomial tree model
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to...
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to value a European call option on the stock with a strike price of $88 that expires in 6 months. Each step is 3 months, the risk free rate is 5% per annum with continuous compounding. What is the option price when u = 1.2 and d = 0.8? Assume that the option is written on 100 shares of stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Use the tree to compute the delta of a 2-year $210-strike European call option on the stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Use the tree to compute the delta of a 2-year $210-strike European call option on the stock.
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the...
Consider a European call option on a non-dividend-paying stock where the stock price is $40, the strike price is $40, the risk-free rate is 4% per annum, the volatility is 30% per annum, and the time to maturity is 6 months. (a) Calculate u, d, and p for a two-step tree. (b) Value the option using a two-step tree. (c) Verify that DerivaGem gives the same answer. (d) Use DerivaGem to value the option with 5, 50, 100, and 500...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is $50. Dividend is zero. Compute the current value of a European call option with the strike price of $51 in 3 months using both replicating portfolio valuation method and the risk neutral valuation method. The risk free rate is APR 5% with continuous compounding (or, 5% per annum)1.  Draw the dynamics of stock price and option price using the one step binomial tree. 2. Draw...
For a European call option and a European put option on the same stock, with the...
For a European call option and a European put option on the same stock, with the same strike price and time to maturity, which of the following is true? A) Before expiration, only in-the-money options can have positive time premium. B) If you have a portfolio of protected put, you can replicate that portfolio by long a call and hold certain amount of risk-free bond. C) Since both the call and the put are risky assets, the risk-free interest rate...
For a European call option and a European put option on the same stock, with the...
For a European call option and a European put option on the same stock, with the same strike price and time to maturity, which of the following is true? A) When the call option is in-the-money and the put option is out-of-the-money, the stock price must be lower than the strike price. B) The buyer of the call option receives the same premium as the writer of the put option. C) Since both the call and the put are risky...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT