Finnick has just been offered a job earning $75,000 a year. Finnick is paid once per year with his first check received one year from today. He anticipates his salary to grow by 2% per year until his retirement in 40 years. Assuming an interest rate of 10%, calculate the present value of his lifetime salary.
Here we will use the following formula for present value of annuity with growth rate.
Present value = P / r-g (1- (1+g / 1+r)n)
where, P= First payment, r= rate of interest, g= growth rate, n= no. of periods.
P= $75000, r = 10%, g= 2%, n= 40
Now putting these values into this equation, we get,
Present value = $75000 / 10% - 2% (1- (1+2% / 1+10%)40)
Present value = $75000 / 8% (1- (1+.02 / 1+.10)40)
Present value = $75000 /.08 (1- (1.02 / 1.10)40)
Present value = $937500 (1- (0.927272)40)
Present value = $937500 (1- 0.487864772)
Present value = $937500 (0.512135228)
Present value = $480126.77625
Get Answers For Free
Most questions answered within 1 hours.