Year | Dividend C/f | PV F at 12.2% | PV at 12.2% | |
0 | 1 | 0 | ||
1 | 0.89127 | 0 | ||
2 | 0.79435 | 0 | ||
3 | 2.5 | 2.5 | 0.70798 | 1.7700 |
4 | 2.5*1.13^1= | 2.825 | 0.63100 | 1.7826 |
5 | 2.5*1.13^2= | 3.19225 | 0.56239 | 1.7953 |
5 | 3.19225*1.0366/(12.2%-3.66%)= | 38.7481 | 0.56239 | 21.7914 |
27.1392 | ||||
So, | ||||
Answers from the above, | ||||
Goodwin’s horizon value at the horizon date (when constant growth begins) | ||||
3.19225*1.0366/(12.2%-3.66%)= 38.74808 ,ie $ .38.75 | ||||
& | ||||
the current intrinsic value= sum of the Discounted value of the cash flows= | ||||
27.14 |
2…At 13.2% required return | ||||||||||
To find P0 | To find P2 | To find P3 | ||||||||
Year | Dividend C/f | PV F at 13.2% | PV at 13.2% | PV F at 13.2% | PV at 13.2% | PV F at 13.2% | PV at 13.2% | |||
0 | 1 | 0 | ||||||||
1 | 0.88339 | 0 | ||||||||
2 | 0.78038 | 0 | ||||||||
3 | 2.5 | 2.5 | 0.68938 | 1.7235 | 2.5 | 0.88339 | 2.2085 | |||
4 | 2.5*1.13^1= | 2.825 | 0.60900 | 1.7204 | 2.825 | 0.78038 | 2.2046 | 2.825 | 0.88339 | 2.49558304 |
5 | 2.5*1.13^2= | 3.1923 | 0.53798 | 1.7174 | 3.1923 | 0.68938 | 2.2007 | 3.1923 | 0.78038 | 2.49117388 |
5 | 3.19225*1.0366/(13.2%-3.66%)= | 34.6864 | 0.53798 | 18.6607 | 34.68644 | 0.68938 | 23.9123 | 34.68644 | 0.78038 | 27.0686671 |
P0= | 23.8219 | P2= | 30.5260 | P3= | 32.0554 |
Expected dividend yield (DY₃) |
D3/Intrinsic value of stock at end year 2 |
2.5/30.5260= |
8.19% |
OR can also be calculated as |
D3/Yr. 0 Intrinsic value of stock *1.132^2 |
ie.2.5/(23.8219*1.132^2)= |
8.19% |
Expected capital gains yield (CGY₃) |
Here P3= from the table 32.0554 |
Or can be calculated as |
(30.526*1.132^1)-2.5(div.paid)= 32.0554 |
Now |
CGY(3)= |
(P3-P0)/P0 |
(32.0554-23.8219)/23.8219= |
34.56% |
Get Answers For Free
Most questions answered within 1 hours.