Question

1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model,...

1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $65.70 Option strike price: $74 Time to expiration: 7 months Continuously compounded annual risk-free rate: 3.79% Standard deviation of stock return: 22%

2. Calculate the value of the D2 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $126.77 Option strike price: $132 Time to expiration: 6 months Continuously compounded annual risk-free rate: 1.41%; Standard deviation of stock return: 25%

Homework Answers

Answer #1

1

S = Current price = 65.7
t = time to expiry = 0.583333333
K = Strike price = 74
r = Risk free rate = 3.8%
q = Dividend Yield = 0%
σ = Std dev = 22%
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2)
d1 = (ln(65.7/74)+(0.0379-0+0.22^2/2)*0.583333333333333)/(0.22*0.583333333333333^(1/2))
d1 = -0.492426

2

S = Current price = 126.77
t = time to expiry = 0.5
K = Strike price = 132
r = Risk free rate = 1.4%
q = Dividend Yield = 0%
σ = Std dev = 25%
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2)
d1 = (ln(126.77/132)+(0.0141-0+0.25^2/2)*0.5)/(0.25*0.5^(1/2))
d1 = -0.100423
d2 = d1-σ*t^(1/2)
d2 =-0.100423-0.25*0.5^(1/2)
d2 = -0.2772
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.         What is the value of the following call option according to the Black Scholes Option...
1.         What is the value of the following call option according to the Black Scholes Option Pricing Model? What is the value of the put options?                                                Stock Price = $55.00                                                Strike Price = $50.00                                                Time to Expiration = 3 Months = 0.25 years.                                                Risk-Free Rate = 3.0%.                                                Stock Return Standard Deviation = 0.65. SHOW ALL WORK
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the...
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the following inputs: (1) Current stock price is $21. (2) Strike price is $24. (3) Time to expiration is 5 months. (4) Annualized risk-free rate is 4%. (5) Variance of stock return is 0.17. Round your answer to the nearest cent. In your calculations round normal distribution values to 4 decimal places. Please show step by step calculations in excel. Thank you
You are given the following information about a European call option on Stock XYZ. Use the...
You are given the following information about a European call option on Stock XYZ. Use the Black-Scholes model to determine the price of the option: Shares of Stock XYZ currently trade for 90.00. The stock pays dividends continuously at a rate of 3% per year. The call option has a strike price of 95.00 and one year to expiration. The annual continuously compounded risk-free rate is 6%. It is known that d1 – d2 = .3000; where d1 and d2...
An analyst is interested in using the Black-Scholes model to value call options on the stock...
An analyst is interested in using the Black-Scholes model to value call options on the stock of Ledbetter Inc. The analyst has accumulated the following information: The price of the stock is $30. The strike price is $22. The option matures in 4 months. The standard deviation of the stock’s returns is 0.40. The risk-free rate is 4%. Using the Black-Scholes model, what is the value of the call option?
Use the Black-Scholes model to find the price for a call option with the following inputs:...
Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $30, (2) strike price is $37, (3) time to expiration is 3 months, (4) annualized risk-free rate is 5%, and (5) variance of stock return is 0.16. Do not round intermediate calculations. Round your answer to the nearest cent. $ ?????? PLEASE SHOW THE FORMULA!! Thank you :)
. Use the Black-Scholes model to find the price for a call option with the following...
. Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $45, (2) exercise price is $50, (3) time to expiration is 3 months, (4) annualized risk-free rate is 3%, and (5) variance of stock return is 0.50. . Using the information from question above, find the value of a put with a $50 exercise price.
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike...
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike price of the option, X $40.00 Number of months unitl expiration 5 Formulas Time until the option expires, t #N/A Risk-free rate, rRF 3.00% Variance, σ2 0.25 d1 = #N/A N(d1) = 0.5000 d2 = #N/A N(d2) = 0.5000 VC = #N/A
Use the Black-Scholes model to calculate the theoretical value of a DBA December 45 call option....
Use the Black-Scholes model to calculate the theoretical value of a DBA December 45 call option. Assume that the risk free rate of return is 6 percent, the stock has a variance of 36 percent, there are 91 days until expiration of the contract, and DBA stock is currently selling at $50 in the market. [Hint: Use Excel's NORMSDIST() function to find N(d1) and N(d2)]
Calculate the price of a European call option using the Black Scholes model and the following...
Calculate the price of a European call option using the Black Scholes model and the following data: stock price = $56.80, exercise price = $55, time to expiration = 15 days, risk-free rate = 2.5%, standard deviation = 22%, dividend yield = 8%.
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $88 per share, the standard deviation of its return is 44 percent...