1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $65.70 Option strike price: $74 Time to expiration: 7 months Continuously compounded annual risk-free rate: 3.79% Standard deviation of stock return: 22%
2. Calculate the value of the D2 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $126.77 Option strike price: $132 Time to expiration: 6 months Continuously compounded annual risk-free rate: 1.41%; Standard deviation of stock return: 25%
1
S = Current price = | 65.7 | ||
t = time to expiry = | 0.583333333 | ||
K = Strike price = | 74 | ||
r = Risk free rate = | 3.8% | ||
q = Dividend Yield = | 0% | ||
σ = Std dev = | 22% | ||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | |||
d1 = (ln(65.7/74)+(0.0379-0+0.22^2/2)*0.583333333333333)/(0.22*0.583333333333333^(1/2)) | |||
d1 = -0.492426 |
2
S = Current price = | 126.77 | ||
t = time to expiry = | 0.5 | ||
K = Strike price = | 132 | ||
r = Risk free rate = | 1.4% | ||
q = Dividend Yield = | 0% | ||
σ = Std dev = | 25% | ||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | |||
d1 = (ln(126.77/132)+(0.0141-0+0.25^2/2)*0.5)/(0.25*0.5^(1/2)) | |||
d1 = -0.100423 | |||
d2 = d1-σ*t^(1/2) | |||
d2 =-0.100423-0.25*0.5^(1/2) | |||
d2 = -0.2772 |
Get Answers For Free
Most questions answered within 1 hours.