Loan amount =19000-$2800 =16200 | |||||
We need to find period of loan | |||||
Present Value Of An Annuity | |||||
= C*[1-(1+i)^-n]/i] | |||||
Where, | |||||
C= Cash Flow per period | |||||
i = interest rate per period | |||||
n=number of period | |||||
16200= $272[ 1-(1+0.005416666667)^-n /0.005416666667] | |||||
16200= $272[ 1-(1.005416666667)^-n /0.005416666667] | |||||
16200/272 =[ 1-(1.005416666667)^-n /0.005416666667] | |||||
n =72 months | |||||
that menas = 72/12 | |||||
=6 years | |||||
Correct Option :C.6.5% APR for 6 years |
Get Answers For Free
Most questions answered within 1 hours.