You purchase a zero coupon bond with 21 years to maturity and a yield to maturity of 5.53 percent. The bond has a par value of $1,000. What is the implicit interest for the first year? Assume semiannual compounding.
$17.24
$17.39
$17.83
$15.60
$17.12
Step-1, Price of the Zero-Coupon Bond at 21 Years to maturity
Par Value = $1,000
Semi-annual Yield to Maturity (YTM) = 2.765% [5.53% x ½]
Number of period = 42 Years [21 Years x 2]
The Value of the Bond = Par Value / (1 +YTM)n
= $1,000 / (1 + 0.02765)42
= $1,000 / 3.14412
= $318.06
Step-2, Price of the Zero-Coupon Bond at 20 Years to maturity
Par Value = $1,000
Semi-annual Yield to Maturity (YTM) = 2.765% [5.53% x ½]
Number of period = 40 Years [20 Years x 2]
The Value of the Bond = Par Value / (1 +YTM)n
= $1,000 / (1 + 0.02765)40
= $1,000 / 2.97721
= $335.89
Step-3, Implicit Interest for the first year
Therefore, Implicit interest for the first year = Price of the Zero-Coupon Bond at 20 Years to maturity - Price of the Zero-Coupon Bond at 21 Years to maturity
= $335.89 - $318.06
= $17.83
“Hence, The Implicit interest for the first year would be $17.83”
Get Answers For Free
Most questions answered within 1 hours.