Part A:
FV of Annuity = Sum [ CF * FVF(r%, n) ]
FVF (r%, n) = (1+r)^n
r = Int Rate per anum
n is no. of Years
Particulars | Amount |
Cash Flow | 1000 |
Int Rate | 10.000% |
Periods | 7 |
FV of Annuity = Cash Flow * [ [(1+r)^n ] - 1 ] /r | |
=1000 * [ [(1+0.1)^7] - 1 ] / 0.1 | |
=1000 * [ [(1.1)^7] - 1 ] /0.1 | |
=1000 * [ [1.9487] - 1 ] / 0.1 | |
=1000 * [0.9487] /0.1 | |
9487.17 |
Part B:
FV of Annuity Due :
= (1+r) * CF * [ (1+r)^n - 1 ] / r ]
= (1+0.10) * 1000 * [ [ (1+0.10)^7 - 1 ] /r ]
= (1.10) * 1000 * [ [ (1.10)^7 - 1 ] /0.10 ]
= (1.10) * 1000 * [ [ 1.9487 - 1 ] /0.10 ]
= (1.10) * 1000 * [ [ 0.9487 ] /0.10 ]
= USD 10,435.89
Get Answers For Free
Most questions answered within 1 hours.