A truck costing $112,000 is paid off in monthly installments over four years with 7.5% APR. After three years the owner wishes to sell the truck. What is the amount he needs to pay on his loan before he can sell the truck?
Given about a truck loan,
Loan amount PV = $112000
loan period t = 4 years
interest rate r = 7.5% per year compounded monthly
So, monthly loan payment is calculated using PV formula of annuity,
monthly payment PMT = PV*(r/n)/(1 - (1+r/n)^(-n*t)) = 112000*(0.075/12)/(1 - (1+0.075/12)^(-12*4)) = $2708.04
After 3 years, remaining balance on the loan is PV of the annuity for the remaining year
So, Value of loan remaining after 3 years = PMT*(1 - (1+r/n)^(-n*t))/(r/n), where t = 1
=> value of loan remaining = 2708.04*(1 - (1+0.075/12)^(-12*1))/(0.075/12) = $31213.90
So, amount he needs to pay on his loan is $31213.90
Get Answers For Free
Most questions answered within 1 hours.