Question

A stock price is currently 100. Over each of the next to six months periods it...

A stock price is currently 100. Over each of the next to six months periods it is expected to go up by 10% or down by 10%. the risk free interest rate is 8% per annum. What is the value of the European call and put options with a strike price of 100? Verify that the put call parity is satisfied.

Homework Answers

Answer #1

I have answered the question below

Please up vote for the same and thanks!!!

Do reach out in the comments for any queries

Solution

As per given question

u = 1.1

d = .9

r = .08

δt = .5

T = 1, and K = 100.

So Risk neutral probability = e^r*t - d/(u-d)

p = e (.08)(.5) − (.9)/ 1.1 − .9 = .7041 and 1 − p = .2959.

The value of the call option is therefore f = e ^−(.08)(1)[(.7041)^2 (21)+(.7041)(.2959)(0)+(.2959)^2 )(0)] = $9.61.

value of put option = e ^−(.08)(1)[(.7041)^2 (0)+(.7041)(.2959)(1)+(.2959)^2 )(19)] = $ 1.92

For put call parity

Call option price + pv of strike price = put option price + spot price

LHS = 9.61 + 100*e^-.08 = 101.92

RHS = 1.92 + 100 = 101.92

hence proved

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The stock price is currently $110. Over each of the next two six-month periods, it is...
The stock price is currently $110. Over each of the next two six-month periods, it is expected to go up by 12% or down by 12%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a one-year European call option with a strike price of $100?
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by10%. The risk-free interest rate is 12% per annum with continuous compounding. (a) What is the value of a six-month European put option with a strike price of $42? (b) What is the value of a six-month American put option with strike price of $42?
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $42? What is the value of a six-month American put option with a strike price of $42? What is the value of a six-month American put option with...
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 8% with a probability of 50% or down by 4% with a probability of 50%. The risk-free interest rate is 4% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $50? Use binomial tree method to solve this problem.
A stock price is currently $100. Over each of the next two 3-month periods it is...
A stock price is currently $100. Over each of the next two 3-month periods it is expected to go up or go down with up-factor u and down-factor d. The risk-free interest rate is 6% per annum with continuously compounding. Consider a 6-month American put option with a strike price of K. Find the price of this American put option. Motivate your solutions, discuss early exercising decisions at each nodes prior to the maturity. K = 100, u = 1.3,...
A stock price is currently S = 100. Over the next year, it is expected to...
A stock price is currently S = 100. Over the next year, it is expected to go up by 100% (u = 2) or down by 50% (d = 0.50). The risk-free interest rate is r = 20% per annum with continuous compounding. What is the value of a 12-month European Put option with a strike price K = 100?
A stock price is currently $100. Over each of the next two six-month periods, it is...
A stock price is currently $100. Over each of the next two six-month periods, it is expected to go up by 10% or down by 10%. The risk-free interest rate is 10% per year with semi-annual compounding. Part I. Use the two-steps binomial tree model to calculate the value of a one-year American put option with an exercise price of $101. Part II. Is there any early exercise premium contained in price of the above American put option? If there...
A price on a non-dividend paying stock is currently £50. Over each of the next two...
A price on a non-dividend paying stock is currently £50. Over each of the next two six-month periods the stock is expected to go up by 5% or down by 10%. The risk- free interest rate is 3% per annum with continuous compounding. (a) What is the value of a one-year European call option with a strike price of £48? [10 marks] (b) What is the value of a one-year American call option with a strike price of £48? [4...
Assuming current stock price of ABC Company is $100. Over each of the next two six-month...
Assuming current stock price of ABC Company is $100. Over each of the next two six-month periods, the price is expected to go up by 10% or down by 10% during each six-month period. The risk-free interest rate is 8% per annum with annual compounding. Required: a. Calculate the option premium for a one-year European call option with an exercise price of $80. Show your calculation steps. b. Using the option premium calculated in Part a of Question 9, estimate...
►A stock price is currently $50. It is known that at the end of six months...
►A stock price is currently $50. It is known that at the end of six months it will be either $46 or $54. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European put option with a strike price of $48? What is the value of a six-month American put option with a strike price of $48?