You are planning for retirement 34 years from now. You plan to invest $3,100 per year for the first 5 years, $8,500 per year for the next 10 years, and $10,700 per year for the following 19 years (assume all cash flows occur at the end of each year). If you believe you will earn an effective annual rate of return of 12.2%, what will your retirement investment be worth 34 years from now?
$58,073.60 |
|
$51,759.00 |
|
$2,310,735.22 |
|
$2,592,644.91 |
|
$1,163,838.30 |
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
A=3100*(1.122)^33+3100*(1.122)^32+3100*(1.122)^31+3100*(1.122)^30+3100*(1.122)^29+8500*(1.122)^28+8500*(1.122)^27+8500*(1.122)^26+8500*(1.122)^25+8500*(1.122)^24+8500*(1.122)^23+8500*(1.122)^22+8500*(1.122)^21+8500*(1.122)^20+8500*(1.122)^19+10700*(1.122)^18+10700*(1.122)^17+10700*(1.122)^16+10700*(1.122)^15+10700*(1.122)^14+10700*(1.122)^13+10700*(1.122)^12+10700*(1.122)^11+10700*(1.122)^10+10700*(1.122)^9+10700*(1.122)^8+10700*(1.122)^7+10700*(1.122)^6+10700*(1.122)^5+10700*(1.122)^4+10700*(1.122)^3+10700*(1.122)^2+10700*(1.122)+10700
=$2,592,644.91(Approx).
Get Answers For Free
Most questions answered within 1 hours.