A widow wishes to take out a reverse mortgage on her house. What annual payment can she get if she decides on a $100,000 debt at the end of 10 years, the current rate is 9%, and she wants to take a $10,000 advance?
Step-1, Calculation of Future Value of $10,000 after 10 years at 9% Interest Rate
Future Value = Advance Amount x (1 + r)n
= $10,000 x (1 + 0.09)10
= $10,000 x 2.367363
= $23,674
Step-2, The Amount available for annuity payment
The Amount available for annuity payment = Debt – Future Value of Advance payment
= $10,000 - $23,674
= $76,326
Step-3, Calculation of the Annual Payment that she would get
Future Value of an Ordinary Annuity = P x [{(1+ r)n - 1} / r ]
Future Value = $76,326
Interest Rate (r) = 9%
Number of period = 10 Years
Annual Payment (P) = ?
Future Value of an Ordinary Annuity = P x [{(1+ r)n - 1} / r ]
$76,326 = P x [{(1 + 0.09)10 – 1} / 0.09]
$76,326 = P x [(2.36736 – 1 ) / 0.09]
$76,326 = P x [2.36736 / 0.09]
$76,326 = P x 15.19293
P = $76,326 / 15.19293
P = $5,024 per year
“Therefore, she would get annual payment of $5,024 per year”
Get Answers For Free
Most questions answered within 1 hours.