Question

In this question, you need to price options with various approaches. You will consider puts and...

In this question, you need to price options with various approaches. You will consider puts and calls on a share.

Based on this spot price (36) and this strike price (38) as well as the fact that the risk-free interest rate is 6% per annum with continuous compounding, please undertake option valuations and answer related questions according to following instructions:

Binomial trees:

Additionally, assume that over each of the next two four-month periods, the share price is expected to go up by 11% or down by 10%.

  1. Use a two-step binomial tree to calculate the value of an eight-month European call option using the no-arbitrage approach.
  2. Use a two-step binomial tree to calculate the value of an eight-month European put option using the no-arbitrage approach.
  3. Show whether the put-call-parity holds for the European call and the European put prices you calculated in a. and b.
  4. Use a two-step binomial tree to calculate the value of an eight-month European call option using risk-neutral valuation.
  5. Use a two-step binomial tree to calculate the value of an eight-month European put option using risk-neutral valuation.
  6. Verify whether the no-arbitrage approach and the risk-neutral valuation lead to the same results.
  7. Use a two-step binomial tree to calculate the value of an eight-month American put option.
  8. Calculate the deltas of the European put and the European call at the different nodes of the binomial three.

Note: When you use no-arbitrage arguments, you need to show in detail how to set up the riskless portfolios at the different nodes of the binomial tree.

Black-Scholes-Merton model:

Using the information given above regarding the spot and strike price, risk-free rate of return and the fact that the volatility of the share price is 18%, answer following questions:

  1. What is the price of an eight-month European call?
  1. What is the price of an eight-month American call?
  2. What is the price of an eight-month European put?
  3. How would your result from k. change if a dividend of $1 is expected in three months? How would your result from k. change if a dividend of $1 is expected in ten months?

Note for calculations with the BSM model: Keep four decimal points for d1 and d2. Use the Table for N(x) with interpolation in calculating N(d1) and N(d2).

Finally,

Compare the results you obtained for the prices of European puts and calls using binomial trees and Black-Scholes-Merton model. How large are the differences when expressed as a percentage of the spot price of the share? Provide a possible explanation for these differences.

Homework Answers

Answer #1

xls of the above available here: https://trtl.bz/2AruFiH

FOR PUT OPTION

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Based on the spot price of $26 and the strike price $28 as well as the...
Based on the spot price of $26 and the strike price $28 as well as the fact that the risk-free interest rate is 6% per annum with continuous compounding, please undertake option valuations and answer related questions according to following instructions: Binomial trees: Additionally, assume that over each of the next two four-month periods, the share price is expected to go up by 11% or down by 10%. Use a two-step binomial tree to calculate the value of an eight-month...
Problem 1: Properties of Options (8 marks) The price of a European put that expires in...
Problem 1: Properties of Options The price of a European put that expires in six months and has a strike price of $100 is $3.59. The underlying stock price is $102, and a dividend of $1.50 is expected in four months. The term structure is flat, with all risk-free interest rates being 8% (cont. comp.). a. What is the price of a European call option on the same stock that expires in six months and has a strike price of...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use the Black-Scholes-Merton formula to calculate the price of a European call option with strike price 325 and the price of a European put option with strike price of 275. The options will expire in six months. What is the cost of the range forward created using options in Part (a)? Use...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is $50. Dividend is zero. Compute the current value of a European call option with the strike price of $51 in 3 months using both replicating portfolio valuation method and the risk neutral valuation method. The risk free rate is APR 5% with continuous compounding (or, 5% per annum)1.  Draw the dynamics of stock price and option price using the one step binomial tree. 2. Draw...
Consider a non-divided-paying stock where the stock price is $200, the strike price is $200, the...
Consider a non-divided-paying stock where the stock price is $200, the strike price is $200, the risk-free rate is 5% per annum, the volatility is 35% per annum, and the time to maturity is 5 months. a) Value the European call and put options using the Black-Schools-Merton formula b) Do you think the values of the European call and put options satisfy the put- call parity? Provide evidence for your answer. c) Value the European call and put options using...
A 3-month European call on a futures has a strike price of $100. The futures price...
A 3-month European call on a futures has a strike price of $100. The futures price is $100 and the volatility is 20%. The risk-free rate is 2% per annum with continuous compounding. What is the value of the call option? (Use Black-Scholes-Merton valuation for futures options)
Question 6 - Chapter 7 Textbook: The current share price of Elica plc is £2.26 per...
Question 6 - Chapter 7 Textbook: The current share price of Elica plc is £2.26 per share. It offers a continuously compounded dividend yield of 2.00% per year. The volatility of its stock returns is 50% and risk free rate is 5%, both per annum with continuous compounding. Using Black-Scholes-Merton (B-S-M) model, find the values of N(d1) and N(d2) for an option with a strike price of £2.00 and maturity in six months. (show all step-by-step calculations) Determine the price...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT