Question

Let S = $64, s = 45%, r = 5%, and d = 2.5% (continuously compounded)....

Let S = $64, s = 45%, r = 5%, and d = 2.5% (continuously compounded). Compute the Black-Scholes price for a $60-strike European put option with 9 months until expiration.

Correct answer is $7.02

What are the steps to solve it?

No excel please.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S = $65, s = 43%, r = 5.5%, and d = 2.5% (continuously compounded)....
Let S = $65, s = 43%, r = 5.5%, and d = 2.5% (continuously compounded). Compute the Black-Scholes price for a $70-strike European call option with 3 months until expiration. Correct answer is $3.77 How do you solve with steps? No excel please.
Let S = $58, s = 29%, r = 6%, and d = 3% (continuously compounded)....
Let S = $58, s = 29%, r = 6%, and d = 3% (continuously compounded). Compute the Black-Scholes price for a $50-strike European put option with 9 months until expiration. Answer= $1.92 Please show all the work to get that answer. Thanks
Let S = $75, r = 8% (continuously compounded), d = 5%, s = 40%, T...
Let S = $75, r = 8% (continuously compounded), d = 5%, s = 40%, T = 2. In this situation, the appropriate values of u and d are 1.53726 and 0.69073, respectively. Using a 2-step binomial tree, calculate the value of an $80-strike American put option? Correct answer is 15.656. Can you show steps how to solve it without excel? Thank you!
post all the steps Let S = $45, r = 7% (continuously compounded), d = 1%,...
post all the steps Let S = $45, r = 7% (continuously compounded), d = 1%, s = 25%, T = 2. In this situation, the appropriate values of u and dare 1.36343 and 0.82696, respectively. Using a 2-step binomial tree, calculate the value of a $50-strike European put option. a. $6.702 b. $6.076 c. $5.282 d. $5.227 e. $5.666
Let S = $65, r = 3% (continuously compounded), d = 5%, s = 30%, T...
Let S = $65, r = 3% (continuously compounded), d = 5%, s = 30%, T = 2. In this situation, the appropriate values of u and d are 1.32313 and 0.72615, respectively. Using a 2-step binomial tree, calculate the value of a $55-strike European call option. Answers: a. $14.416 b. $14.291 c. $13.458 d. $13.868 e. $14.519
You are given (1) A stock's price is 45. (2) The continuously compounded risk-free rate is...
You are given (1) A stock's price is 45. (2) The continuously compounded risk-free rate is 6%. (3) The stock's continuous dividend rate is 3%. A European 1-year call option with a strike of 50 costs 6. Determine the premium for a European 1-year put option with a strike of 50.
Suppose the exchange rate is $1.29/Fr, the Swiss franc-denominated continuously compounded interest rate is 7%, the...
Suppose the exchange rate is $1.29/Fr, the Swiss franc-denominated continuously compounded interest rate is 7%, the U.S. dollar-denominated continuously compounded interest rate is 5%, and the exchange rate volatility is 24%. What is the Black-Scholes value of a 3-month $1.30-strike European call on the Swiss franc? Correct answer is $.0533 Please answer by hand, no excel. Thank you!
A stock is currently traded for $135. The risk-free rate is 0.5% per year (continuously compounded...
A stock is currently traded for $135. The risk-free rate is 0.5% per year (continuously compounded APR) and the stock’s returns have an annual standard deviation (volatility) of 56%. Using the Black-Scholes model, we can find prices for a call and a put, both expiring 60 days from today and having strike prices equal to $140. (a) What values should you use for S, K, T−t, r, and σ in the Black-Scholes formula? S = K = T - t...
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price...
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price the following options: European call with strike price of $72 and one year to maturity on a non-dividend-paying stock trading at $65 with volatility of 40%. European put with strike price of $65 and one year to maturity on a non-dividend-paying stock trading at $72 with volatility of 40%
1a) Let S = $50, K = $55, r = 8% (continuously compounded), T = 0.25,...
1a) Let S = $50, K = $55, r = 8% (continuously compounded), T = 0.25, and d = 0. Let u = 1.25, d = 0.7, and n = 1. What are D and B for a European put? Answers: a. D = –0.5055; B = 48.6981 b. D = –0.6640; B = 34.3515 c. D = –0.9695; B = 48.6535 d. D = –0.7273; B = 44.5545 e. D = –0.5607; B = 48.2080 1b) Let S =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT