Problem 2. Consider the following series of cash flows: | ||||||||||||||||||||||
Cumulative | ||||||||||||||||||||||
Month | Amount | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
CF (1,000s of $) | $400.00 | -700 | 1200 | 600 | 300 | -1000 | -1200 | -400 | -300 | -1000 | 1200 | 400 | 300 | 1000 | -1200 | -400 | -300 | 1000 | 1200 | 400 | 300 | -1000 |
What is the NPV if the MARR yields 15%? Compute your solution by two (2) methods as follows: | ||||||||||||||||||||||
Example. | Compute the PV month-by-month and sum those monthly results to find the NPV. I've done this for you as an example. | |||||||||||||||||||||
A. | Read through the example provided in the "Example" tab. Explicitly state that you reviewed the example and understand what is happening. | |||||||||||||||||||||
B. | Then, separately, use Excel's NPV function. | |||||||||||||||||||||
C. | Now recompute the NPV at a MARR of 65%. I know that is awfully high, but see what happens. Comment about the difference. | |||||||||||||||||||||
D. | Compute the FV at the end of month 20 at a MARR of 15%. Note — I do not know of an Excel function that performs this calculation. | |||||||||||||||||||||
Example Þ | ||||||||||||||||||||||
n = | 20 | months | ||||||||||||||||||||
iA = | 15% | % per year = MARRAnnual — This is an effective annual interest rate. | ||||||||||||||||||||
iM = | 1.171% | % per month = MARRMonthly — This is an effective monthly interest rate. | ||||||||||||||||||||
Month = | Cumulative | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Undiscounted CF = | 400 | -700 | 1200 | 600 | 300 | -1000 | -1200 | -400 | -300 | -1000 | 1200 | 400 | 300 | 1000 | -1200 | -400 | -300 | 1000 | 1200 | 400 | 300 | -1000 |
Discount (or PW) Factors = | — — | 1 | 0.988421 | 0.976976 | 0.965663 | 0.954481 | 0.943429 | 0.932505 | 0.921707 | 0.911034 | 0.900485 | 0.890058 | 0.879752 | 0.869565 | 0.859496 | 0.849544 | 0.839707 | 0.829984 | 0.820373 | 0.810874 | 0.801484 | 0.792204 |
Discounted CFs = | — — | -700 | 1186.105 | 586.1853 | 289.6989 | -954.481 | -1132.11 | -373.002 | -276.512 | -911.034 | 1080.582 | 356.0233 | 263.9256 | 869.5652 | -1031.4 | -339.818 | -251.912 | 829.9837 | 984.4477 | 324.3495 | 240.4453 | -792.204 |
A. Initial Investment = -700
Effective MARR Annualy iA =15% = Effective Monthly Rate im = (1 +iA)(1/12) - 1 =1.171%
In excel Scrren Shot = (((1+B4)^(1/12))-1)
Discount for PW factors = 1/(1+im)n , n =Months, for n = 12 = 1/(1.01171)12 = 0.869565
Discounted CFs = Undiscounted CF * Discount (or PW) Factors
B. NPV in Excel = NPV( iM , Undiscounted Cash Flows from month 1 to 20) +Initial Investment
In Scree shot = NPV(B5,D7:W7)+C7 = 248.838
C. Similarly for Effective Annual MARR of 65%:
NPV = -8.147
D. NPV is negative. The project should be rejected with Effective Annual MARR of 65%
But with 15% it is Positive.
At Efeective Annual MARR of 62.37% NPV = 0.
Get Answers For Free
Most questions answered within 1 hours.