Question

If a USD 89.83-strike European call on a non-dividend-paying stock with 0.74 years until expiration is...

If a USD 89.83-strike European call on a non-dividend-paying stock with 0.74 years until expiration is trading at USD 1.64 in an economy where the continuously-compounded interest rate is 6.37%/year and an otherwise identical put is trading at USD 1.89, what is the price of the underlying stock in USD?

Homework Answers

Answer #1

ANSWER DOWN BELOW. FEEL FREE TO ASK ANY DOUBTS. THUMBS UP PLEASE.

As per put call parity

P+ S = present value of X + C

P= value of put option.

S= current price of share

X= strike price

C= value of call option.

Present value of X = X/e^rt

r = risk free rate. 6.37%

t= time period 0.74

Given:

P= value of put option = 1.89

S= current price of share=?

X= strike price = 89.83

Present value of X = 89.83/e^(6.37%×0.74)

C= value of call option = 1.64

1.89+ S = [89.83/e^(6.37%×0.74)]+ 1.64

S= $85.44

Value/Price of Stock =$85.44

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The price of a European call option on a non-dividend-paying stock with a strike price of...
The price of a European call option on a non-dividend-paying stock with a strike price of $50 is $6. The stock price is $51, the continuously compounded risk-free rate (all maturities) is 6% and the time to maturity is one year. What is the price of a one-year European put option on the stock with a strike price of $50? a)$9.91 b)$7.00 c)$6.00 d)$2.09
Consider a European call option and a European put option on a non dividend-paying stock. The...
Consider a European call option and a European put option on a non dividend-paying stock. The price of the stock is $100 and the strike price of both the call and the put is $104, set to expire in 1 year. Given that the price of the European call option is $9.47 and the risk-free rate is 5%, what is the price of the European put option via put-call parity?  
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
the price of a non-dividend-paying stock is $19 and the price of a 3-month European call...
the price of a non-dividend-paying stock is $19 and the price of a 3-month European call option on the stock with a strike price of $20 is $1, while the 3-month European put with a strike price of $20 is sold for $3. the risk-free rate is 4% (compounded quarterly). Describe the arbitrage strategy and calculate the profit. Kindly dont forget the second part of the question
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the...
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the strike price is $29, and the continuously compounded risk-free interest rate is 6% per annum. The volatility of the stock price is 20% per annum. What is price of the call option according to the Black-Schole-Merton model? Please provide you answer in the unit of dollar, to the nearest cent, but without the dollar sign (for example, if your answer is $1.02, write 1.02).
The price of a non-dividend paying stock is $45 and the price of a six-month European...
The price of a non-dividend paying stock is $45 and the price of a six-month European call option on the stock with a strike price of $46 is $1. The risk-free interest rate is 6% per annum. The price of a six-month European put option is $2. Both put and call have the same strike price. Is there an arbitrage opportunity? If yes, what are your actions now and in six months? What is the net profit in six months?
The price of a non-dividend paying stock is $19 and the price of a three-month European...
The price of a non-dividend paying stock is $19 and the price of a three-month European put option on the stock with a strike price of $20 is $1.80. The risk-free rate is 4% per annum. What is the price of a three-month European call option with a strike price of $20? Is the call option in the money or out of the money? Explain Is the put option in the money or out the money? Explain
The prices of European call and put options on a non-dividend-paying stock with 12 months to...
The prices of European call and put options on a non-dividend-paying stock with 12 months to maturity, a strike price of $120, and an expiration date in 12 months are $25 and $5, respectively. The current stock price is $135. What is the implied risk-free rate? Draw a diagram showing the variation of an investor’s profit and loss with the terminal stock price for a portfolio consisting of One share and a short position in one call option Two shares...
A European call option on a non-dividend-payment stock with a strike price of $18 and an...
A European call option on a non-dividend-payment stock with a strike price of $18 and an expiration date in one year costs $3. The stock price is $20 and the risk free rate is 10% per annum.Can u design an arbitrage scheme to expolit this situation?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT