Question

Consider an option on a stock where the stock price is $30, the strike price is...

Consider an option on a stock where the stock price is $30, the strike price is $29, the continuously compounded risk-free rate of return is 5% per year, the continuously compounded standard deviation of its return is 25% per year and the time to maturity is 4 months. If this stock is due to go ex-dividend in 1.5 months and paying a dividend of $0.50 then the Black-Scholes price of a European call on the stock is closest to what number?

$2.21             

$3.11

$4.71

$4.01

$5.41

Homework Answers

Answer #1

Based on the given data, the workings on European Call usinr Black - Scholes Model as below:

Stock 30
Strike 29
Volatility 25%
Risk Free Rate 5%
Term          0.33
Dividend Yield 2%
Calculation of:
d1          0.38
d2          0.24
Call Option          2.52
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price...
Consider an option on a non-dividend-paying stock when the stock price is $30, the exercise price is $29, the risk-free interest rate is 5% per annum, the volatility is 25% per annum, and the time to maturity is four months. Assume that the stock is due to go ex-dividend in 1.5 months. The expected dividend is 50 cents. Using the Black-Scholes-Merton model, what is the price of the option if it is a European put?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the...
Consider a six-month European call option on a non-dividend-paying stock. The stock price is $30, the strike price is $29, and the continuously compounded risk-free interest rate is 6% per annum. The volatility of the stock price is 20% per annum. What is price of the call option according to the Black-Schole-Merton model? Please provide you answer in the unit of dollar, to the nearest cent, but without the dollar sign (for example, if your answer is $1.02, write 1.02).
The price of a European call option on a non-dividend-paying stock with a strike price of...
The price of a European call option on a non-dividend-paying stock with a strike price of $50 is $6. The stock price is $51, the continuously compounded risk-free rate (all maturities) is 6% and the time to maturity is one year. What is the price of a one-year European put option on the stock with a strike price of $50? a)$9.91 b)$7.00 c)$6.00 d)$2.09
The price of a European put option on a stock with a strike price of $30.00...
The price of a European put option on a stock with a strike price of $30.00 is $6.80. The stock price is $28.00, the continuously compounded risk-free rate (all maturities) is 4% and the time to maturity is one year. A dividend of $2.00 is expected in three months. What is the price of a one-year European call option on the stock with a strike price of $30.00?   Select one: a. $7.22 b. $4.00 c. $6.98 d. $4.74
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price...
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price the following options: European call with strike price of $72 and one year to maturity on a non-dividend-paying stock trading at $65 with volatility of 40%. European put with strike price of $65 and one year to maturity on a non-dividend-paying stock trading at $72 with volatility of 40%
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT