Question

A put option with a strike price of $90 sells for $6.3. The option expires in four months, and the current stock price is $92.3. If the risk-free interest rate is 4.3 percent, what is the price of a call option with the same strike price? (Round your answer to 2 decimal places. Omit the "$" sign in your response.) Price of a call option $

Answer #1

_______________________________

_______________________________

As per Call Put Partiy

Strike Price * e^(-r*t) + Premium on Call Option = Current Value of Stock + Premium on Put Option

where r is the risk free rate of return i.e. 0.043

t is the time period 4 / 12 = 0.33333333333

90 * e^(-0.043*0.333333333333) + P = 92.3 + 6.3

90 * e^(-0.01433333333) + P = 92.3 + 6.30

90 * 0.98576889986 + P = 92.3+ 6.30

88.7192009874 + P = 92.3 + 3.35

P = 6.93

A call option is currently selling for $4.5. It has a strike
price of $75 and seven months to maturity. The current stock price
is $77, and the risk-free rate is 4.4 percent. The stock will pay a
dividend of $2.2 in two months. What is the price of a put option
with the same exercise price? (Round your answer to 2 decimal
places. Omit the "$" sign in your response.) Price of a put option
$

A put option that expires in six months with an exercise price
of $54 sells for $4.31. The stock is currently priced at $59, and
the risk-free rate is 4.4 percent per year, compounded
continuously. What is the price of a call option with the same
exercise price?

The price of a European put that expires in six months and has a
strike price of $100 is $3.59. The underlying stock price is $102,
and a dividend of $1.50 is expected in four months. The term
structure is flat, with all risk-free interest rates being 8%
(cont. comp.).
What is the price of a European call option on the same stock
that expires in six months and has a strike price of $100?
Explain in detail the arbitrage...

There is an American put option on a stock that expires in two
months. The stock price is $82, and the standard deviation of the
stock returns is 67 percent. The option has a strike price of $90,
and the risk-free interest rate is an annual percentage rate of 6
percent. What is the price of the option?

A one-year call option has a strike price of 60, expires in 6
months, and has a price of $2.5. If the risk-free rate is 7
percent, and the current stock price is $55, what should the
corresponding put be worth?
a. $5.00
b. $7.54
c. $7.08
d. $5.50

A put option with a strike of $100 expires in 3 months. The
underlying stock follows a binomial process and does not pay
dividends. Today, the stock price is $110, and in three months its
price will be $125 or $90. The annual Risk free rate is 6%.
calculate the fair price of the put option.
4.55, 3.51, 3.77, 4.02, OR 4.28.

The price of a European call that expires in six months and has
a strike price of $28 is $2. The underlying stock price is $28, and
a dividend of $1 is expected in 4 months. The term structure is
flat, with all risk-free interest rates being 6%. If the price of a
European put option with the same maturity and strike price is $3,
what will be the arbitrage profit at the maturity?

5.7. The price of a European call that expires in six months and
has a strike price of $30 is $2. The underlying stock price is $29,
and a dividend of $0.50 is expected in two months and again in five
months. Risk-free interest rates (all maturities) are 10%. What is
the price of a European put option that expires in six months and
has a strike price of $30?

There is an American put option on a stock that expires in two
months. The stock price is $69 and the standard deviation of the
stock returns is 59 percent. The option has a strike price of $78
and the risk-free interest rate is an annual percentage rate of 5.8
percent.
What is the price of the option? Use a two-state model with
one-month steps. (Do not round intermediate calculations
and round your answer to 2 decimal places, e.g.,
32.16.)

A European call option and put option on a stock both have a
strike price of $25 and an expiration date in four months. Both
sell for $4. The risk-free interest rate is 6% per annum, the
current stock price is $23, and a $1 dividend is expected in one
month. Identify the arbitrage opportunity open to a trader.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 14 minutes ago

asked 20 minutes ago

asked 21 minutes ago

asked 28 minutes ago

asked 48 minutes ago

asked 56 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 3 hours ago

asked 3 hours ago