The standard deviation of expected returns for investments X and Y equal 10.3% and 7.8%, respectively. The correlation between returns for X and Y is 0.30. How much risk reduction, that is diversification benefit in basis points, does the minimum risk portfolio provide?
a. 112 b. 134 c. 154 d. 178 e. 193
Weights of a Minimum variance portfolio = | |||||||
wx= | (Sdy^2 - r x SDx x Sdy)/(SDx^2 +Sdy^2 - 2 x r x SDx x SDy) | ||||||
7.8^2 - 0.3/(10.3^2+7.8^2-2x0.3x10.3x7.8) | |||||||
0.309435 | |||||||
Wy = | 1- wx | ||||||
0.690565 | |||||||
SDp= | Sq Root (Wx^2 x SDx^2 + Wy^2 x SDy^2 + 2 x Wx x Wy x Cov(x,y)) | ||||||
Wx^2 x sdx^2 = | 10.15813 | ||||||
Wy^2 x sdy^2 = | 29.01337 | ||||||
2 x Wx x Wy x Cov(x,y) = | 10.30047 | ||||||
49.47197 | |||||||
SDp = | Sq Root (1812.112) | 7.034 | |||||
Weighted average sd = | |||||||
wx x sdx + wy x sdy = | 8.574 | ||||||
Diversification benefit = | 8.574 - 7.034 = | 1.540 | |||||
Diversification benefit (Basis point)= | 1.54 x 100 = | 154 | |||||
(answer c) | |||||||
Get Answers For Free
Most questions answered within 1 hours.