Question

"TSLA stock price is currently at $800. The $1000-strike European TSLA call option expiring on December 18, 2020 has a delta of 0.45. N(d2) of the option is 0.25. Assume zero interest rate and no dividend. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry."

Answer #1

Proper solution is provided.

"TSLA stock price is currently at $800. The $1000-strike
European TSLA call option expiring on December 18, 2020 has a delta
of 0.45. N(d2) of the option is 0.25. Assume zero interest rate and
no dividend. Compute the Black-Merton-Scholes value of the TSLA
European put option at the same strike and expiry."

"TSLA stock price is currently at $800. The $1000-strike
European TSLA call option expiring on December 18, 2020 has a delta
of 0.45. N(d2) of the option is 0.25. Assume zero interest rate and
no dividend. Compute the Black-Merton-Scholes value of the TSLA
European put option at the same strike and expiry

"TSLA stock price is currently at $800. The $1000-strike
European TSLA call option expiring on December 18, 2020 has a delta
of 0.45. N(d2) of the option is 0.25. Assume zero interest rate and
no dividend. Compute the Black-Merton-Scholes delta (in decimals
with correct signs) of the TSLA European put option at the same
strike and expiry."

TSLA stock price is currently at $800. The $1000-strike European
TSLA call option expiring on December 18, 2020 has a delta of 0.45.
N(d2) of the option is 0.25. Assume zero interest rate and no
dividend. Compute the Black-Merton-Scholes delta (in decimals with
correct signs) of the TSLA European put option at the same strike
and expiry."

TSLA stock price is currently at $800. The $1000-strike European
TSLA call option expiring on December 18, 2020 has a delta of 0.45.
N(d2) of the option is 0.25. Assume zero interest rate and no
dividend. Compute the Black-Merton-Scholes value of the call
option.

"TSLA stock price is currently at $800. The $1000-strike
European TSLA call option expiring on December 18, 2020 has a delta
of 0.45. N(d2) of the option is 0.25. Assume zero interest rate and
no dividend. Compute the Black-Merton-Scholes value of the call
option."

TSLA stock price is currently at $800. The 6-month $1000-strike
European call option on TSLA has a delta of 0.46. N(d2) of the
option is 0.26. TSLA does not pay dividend. Continuously
compounding interest rate is 5%. Compute the Black-Merton-Scholes
value of the TSLA European put option at the same strike and
expiry.

TSLA stock price is currently at $800. The 6-month $1000-strike
European call option on TSLA has a delta of 0.46. N(d2) of the
option is 0.26. TSLA does not pay dividend. Continuously
compounding interest rate is 5%. Compute the Black-Merton-Scholes
value of the TSLA European put option at the same strike and
expiry.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 8 minutes ago

asked 11 minutes ago

asked 12 minutes ago

asked 17 minutes ago

asked 23 minutes ago

asked 24 minutes ago

asked 24 minutes ago

asked 30 minutes ago

asked 35 minutes ago

asked 37 minutes ago

asked 39 minutes ago