Question

9. You are given the following information for a non-dividend paying stock: 1) the current stock...

9. You are given the following information for a non-dividend paying stock: 1) the current stock price is 0.25; 2) the stock’s volatility is 0.35; 3) the continuously compounded expected rate of return from the stock is 15%. Calculate the upper limit K such that in 6 months (i.e. T = 0.5) P[S(T) ≤ K] = 90%.

Homework Answers

Answer #1

Using the concept of Black Scholes Merton model, we find the upper limit of K

Given - P[S(T) ≤ K] = 90% this implies that the z score for this is 1.645

K = S*e^(r - sigma^2/2)*t +/- sigma*T^0.5*1.645

S = 0.25, r = 0.15, sigma = 0.35, T = 0.5

Lets calculate -

Hence, upper limit = 0.39265

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a non-dividend paying stock currently priced at $100 per share. Over any given 6- month...
Consider a non-dividend paying stock currently priced at $100 per share. Over any given 6- month period, the stock price is expected to go up or down by 10%. The continuously compounded risk-free rate is 8% per annum. The stock’s real-world continuously compounded expected return is 16% per annum. a) (5%) Calculate the current price of a 1-year strike-100 European call option on the stock. b) (5%) Calculate the real-world continuously compounded expected return on the call
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is 6% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(?!−52,0)]" where is the stock price in six months?
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is 5% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(?! − 63, 0)]" where ST is the stock price in six months?
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is 5% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max (St − 63, 0)]" where is the stock price in six months?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
The current price of a non-dividend paying stock is $50 and the continuously compounded risk free...
The current price of a non-dividend paying stock is $50 and the continuously compounded risk free interest rate 8%. Using options, you would like to just expose yourself to the risk and returns of the stock over a period of 6 months without actually buying the stock. Though you don’t have to pay the price of the stock for this, there is still a cost involved now. How much is it?
The current price of a non-dividend-paying stock is $40. Over the next year it is expected...
The current price of a non-dividend-paying stock is $40. Over the next year it is expected to rise to $42 or fall to $37. An investor buys put options with a strike price of $41 expiring in one year. Please form a riskless portfolio and use no arbitrage method to value this put option. Risk free rate is 3% per annum, continuously compounded.
A non-dividend paying stock sells for $110. A call on the stock has an exercise price...
A non-dividend paying stock sells for $110. A call on the stock has an exercise price of $105 and expires in 6 months. If the annual interest rate is 11% (0.11) and the annual standard deviation of the stock’s returns is 25% (0.25), what is the price of a European call option according to the Black-Scholes-Merton option pricing model.
A non-dividend paying stock sells for $110. A call on the stock has an exercise price...
A non-dividend paying stock sells for $110. A call on the stock has an exercise price of $105 and expires in 6 months. If the annual interest rate is 11% (0.11) and the annual standard deviation of the stock’s returns is 25% (0.25), what is the price of a European put option according to the Black-Scholes-Merton option pricing model. 13.86 3.24 4.35 6.45