Question

What is the value of a 9-month call with a strike price of $61 given the...

What is the value of a 9-month call with a strike price of $61 given the Black-Scholes option pricing model and the following information?

Stock price $63
Risk-free rate     6 percent
Standard deviation   49 percent
N(d1)   .653300
N(d2)   .487990

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model,...
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $65.70 Option strike price: $74 Time to expiration: 7 months Continuously compounded annual risk-free rate: 3.79% Standard deviation of stock return: 22% 2. Calculate the value of the D2 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $126.77 Option strike price: $132 Time to expiration: 6 months Continuously compounded...
You are given the following information about a European call option on Stock XYZ. Use the...
You are given the following information about a European call option on Stock XYZ. Use the Black-Scholes model to determine the price of the option: Shares of Stock XYZ currently trade for 90.00. The stock pays dividends continuously at a rate of 3% per year. The call option has a strike price of 95.00 and one year to expiration. The annual continuously compounded risk-free rate is 6%. It is known that d1 – d2 = .3000; where d1 and d2...
Black-Scholes Model Assume that you have been given the following information on Purcell Industries: Current stock...
Black-Scholes Model Assume that you have been given the following information on Purcell Industries: Current stock price = $15 Strike price of option = $14 Time to maturity of option = 9 months Risk-free rate = 6% Variance of stock return = 0.13 d1 = 0.52119 N(d1) = 0.69888 d2 = 0.20894 N(d2) = 0.58275 According to the Black-Scholes option pricing model, what is the option's value? Do not round intermediate calculations. Round your answer to the nearest cent. Use...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $88 per share, the standard deviation of its return is 44 percent...
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time...
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time to expiration=3 months, standard deviation=35% per year, and annual interest rate=6%.No dividends will be paid before option expires. What are the N(d1), N(d2), and the value of the call option, respectively?
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike...
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike price of the option, X $40.00 Number of months unitl expiration 5 Formulas Time until the option expires, t #N/A Risk-free rate, rRF 3.00% Variance, σ2 0.25 d1 = #N/A N(d1) = 0.5000 d2 = #N/A N(d2) = 0.5000 VC = #N/A
Assume that you have been given the following information on Purcell Industris: (Formula in Excel) Current...
Assume that you have been given the following information on Purcell Industris: (Formula in Excel) Current stock price = $15.00 Strike price of option = $15.00 Time of maturity of option = 6 months Risk-free rate = 6% Variance of stock return = 0.12 d1 = 0.24495 N(d1) = 0.59675 d2= 0 N(d2) = 0.5 Binomial Lattice of stock prices: P= P(u)= Cu = P(d) = Cd= πu = πd According to the Black-Scholes option pricing model, what is the...
Find the current fair values of a D1 month European call and a D2 month European...
Find the current fair values of a D1 month European call and a D2 month European put option, using a current stock price of D3, strike price of D4, volatility of D5, interest rate of D6 percent per year, continuously, compounded. Obtain the current fair values of the following: 1.European call by simulation. 2.European put by simulation. 3.European call by Black-Scholes model. 4.European put by Black-Scholes model. D1 D2 D3 D4 D5        D6 11.2 10.9 31.7 32.6 0.65      9.5
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the call option.
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has...
TSLA stock price is currently at $800. The 6-month $1000-strike European call option on TSLA has a delta of 0.46. N(d2) of the option is 0.26. TSLA does not pay dividend. Continuously compounding interest rate is 5%. Compute the Black-Merton-Scholes value of the TSLA European put option at the same strike and expiry.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT