Question

Use the Black-Scholes formula for the following stock: Time to expiration 6 months Standard deviation 44%...

Use the Black-Scholes formula for the following stock:

Time to expiration 6 months

Standard deviation 44%

per year Exercise price $46

Stock price $45

Annual interest rate 4%

Dividend 0

Calculate the value of a call option.

Homework Answers

Answer #1

We use Black-Scholes Model to calculate the value of the call option.

The value of a call option is:

C = (S0 * N(d1)) - (Ke-rt * N(d2))

where :

S0 = current spot price

K = strike price

N(x) is the cumulative normal distribution function

r = risk-free interest rate

t is the time to expiry in years

d1 = (ln(S0 / K) + (r + σ2/2)*T) / σ√T

d2 = d1 - σ√T

σ = standard deviation of underlying stock returns

First, we calculate d1 and d2 as below :

  • ln(S0 / K) = ln(45 / 46). We input the same formula into Excel, i.e. = LN(45/46)
  • (r + σ2/2)*T = (0.04 + (0.442/2)*0.50
  • σ√T = 0.44 * √0.50

d1 = 0.1492

d2 = -0.1619

N(d1), and N(d2) are calculated in Excel using the NORMSDIST function and inputting the value of d1 and d2 into the function.

N(d1) = 0.5593

N(d2) = 0.4357

Now, we calculate the values of the call option as below:

C = (S0 * N(d1))   - (Ke-rt * N(d2)), which is (45 * 0.5593) - (46 * e(-0.04 * 0.50))*(0.4357)    ==> $5.5241

Value of call option is $5.5241

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Black-Scholes formula for the following stock: Time to expiration 6 months Standard deviation 50%...
Use the Black-Scholes formula for the following stock: Time to expiration 6 months Standard deviation 50% per year Exercise price $52 Stock price $50 Annual interest rate 3% Dividend 0 Calculate the value of a put option. (Do not round intermediate calculations. Round your answer to 2 decimal places.) 1. Value of Put Option = I NEED to see this worked out by hand (pen & paper) to understand and learn how to do it on my own without the...
7. Use the Black -Scholes formula to find the value of a call option on the...
7. Use the Black -Scholes formula to find the value of a call option on the following stock: Time to expiration = 6 months Standard deviation = 50% per year Exercise price = $50 Stock price = $50 Interest rate = 3% Dividend = 0 8. Find the Black -Scholes value of a put option on the stock in the previous problem with the same exercise price and expiration as the call option. NEED HELP WITH NUMBER 8
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the...
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28 Call value            $
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time...
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time to expiration=3 months, standard deviation=35% per year, and annual interest rate=6%.No dividends will be paid before option expires. What are the N(d1), N(d2), and the value of the call option, respectively?
Use the Black-Scholes formula to value the following options: a. A Call option written on a...
Use the Black-Scholes formula to value the following options: a. A Call option written on a stock selling for $100 per share with a $110 exercise price. The stock's standard deviation is 15% per quarter. The option matures in three months. The risk free interest is 3% per quarter. b. A put option written on the same stock at the same time, with the same exercise price and expiration date. Now for each of these options find the combination of...
Use the Black-Scholes formula to find the value of a call option based on the following...
Use the Black-Scholes formula to find the value of a call option based on the following inputs. (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 12.00 Exercise price $ 5.00 Interest rate 5.00 % Dividend yield 4.00 % Time to expiration 0.4167 Standard deviation of stock’s returns 31.00 % Call value            $
Use the Black-Scholes formula to find the value of a call option based on the following...
Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model,...
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $65.70 Option strike price: $74 Time to expiration: 7 months Continuously compounded annual risk-free rate: 3.79% Standard deviation of stock return: 22% 2. Calculate the value of the D2 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $126.77 Option strike price: $132 Time to expiration: 6 months Continuously compounded...
Calculate the price of a European call option using the Black Scholes model and the following...
Calculate the price of a European call option using the Black Scholes model and the following data: stock price = $56.80, exercise price = $55, time to expiration = 15 days, risk-free rate = 2.5%, standard deviation = 22%, dividend yield = 8%.
. Use the Black-Scholes model to find the price for a call option with the following...
. Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $45, (2) exercise price is $50, (3) time to expiration is 3 months, (4) annualized risk-free rate is 3%, and (5) variance of stock return is 0.50. . Using the information from question above, find the value of a put with a $50 exercise price.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT