Question

The strike price for a European call and put option is $56 and the expiration date for the call and the put is in 9 months. Assume the call sells for $6, while the put sells for $7. The price of the stock underlying the call and the put is $55 and the risk free rate is 3% per annum based on continuous compounding. Identify any arbitrage opportunity and explain what the trader should do to capitalize on that opportunity. In the event you determine an arbitrage opportunity exists, calculate possible payoffs from the arbitrage strategy.

Answer #1

First calculate call option price given data for put option:

Using put call parity formula:

Put option = Call option - Stock price + Strike price*exp(- risk free rate * time)

Call option = 7 + 55 - 56*EXP(-3%* 9/12)

Put option = $7.25

As calculated call option is $7.25 and given Call option price is $6 which means in market call is under price.

If put call parity holds, traders should buy Call options in market for $6 and in future when market recognize the put call parity the price of call options will go up to $7.25 and it will give a pay off of $1.25 i.e. 7.25-6 = 1.25

A
European call option and put option on a stock both have a strike
price of $20 and an expiration date in three months. Both sell for
$2. The risk-free interest rate is 5% per annum, the current stock
price is $25, and a $1 dividend is expected in one month. Identify
the arbitrage opportunity open to a trader.

A European call option and put option on a stock both have a
strike price of $25 and an expiration date in four months. Both
sell for $4. The risk-free interest rate is 6% per annum, the
current stock price is $23, and a $1 dividend is expected in one
month. Identify the arbitrage opportunity open to a trader.

A
European call option and put option on a stock both have a strike
price of $20 and an expiration date in three months. Both sell for
$3. The risk-free interest rate is 10 % per aunum, the current
stock price is $19 , and a $1 dividend is expected in one month.
identify the arbitrage oppotunity to a trader.

A European call option on a stock with a strike price of $50 and
expiring in six months is trading at $14. A European put option on
the stock with the same strike price and expiration as the call
option is trading at $2. The current stock price is $60 and a $1
dividend is expected in three months. Zero coupon risk-free bonds
with face value of $100 and maturing after 3 months and 6 months
are trading at $99...

Suppose that a 6-month European call A option on a stock with a
strike price of $75 costs $5 and is held until maturity, and
6-month European call B option on a stock with a strike price of
$80 costs $3 and is held until maturity. The underlying stock price
is $73 with a volatility of 15%. Risk-free interest rates (all
maturities) are 10% per annum with continuous compounding.
Use put-call parity to explain how would you construct a
European...

A six-month European call option's underlying stock price is
$86, while the strike price is $80 and a dividend of $5 is expected
in two months. Assume that the risk-free interest rate is 5% per
annum with continuous compounding for all maturities.
1) What should be the lowest bound price for a six-month
European call option on a dividend-paying stock for no
arbitrage?
2) If the call option is currently selling for $2, what
arbitrage strategy should be implemented?
1)...

A 3-month European
put option on a non-dividend-paying stock is currently selling for
$3.50. The stock price is $47.0, the strike price is $51, and the
risk-free interest rate is 6% per annum (continuous compounding).
Analyze the situation to answer the following question:
If there is no
arbitrage opportunity in above case, what range of put option price
will trigger an arbitrage opportunity? If there is an arbitrage
opportunity in the above case, please provide one possible trading
strategy to...

A 3-month European
put option on a non-dividend-paying stock is currently selling for
$3.50. The stock price is $47.0, the strike price is $51, and the
risk-free interest rate is 6% per annum (continuous compounding).
Analyze the situation to answer the following question:
If there is no
arbitrage opportunity in above case, what range of put option price
will trigger an arbitrage opportunity? If there is an arbitrage
opportunity in the above case, please provide one possible trading
strategy to...

A European put option is currently worth $3 and has a strike
price of $17. In four months, the put option will expire. The stock
price is $19 and the continuously compounding annual risk-free rate
of return is .09. What is a European call option with the same
exercise price and expiry worth? Also, given that the price of the
call option is $5, show how is there an opportunity for
arbitrage.

A 1-month European call option on a non-dividend-paying-stock is
currently
selling for $3.50. The stock price is $100, the strike price is
$95, and the risk-free interest
rate is 6% per annum with continuous compounding.
Is there any arbitrage opportunity? If "Yes", describe your
arbitrage strategy using a table of cash flows. If "No or
uncertain", motivate your answer.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 50 seconds ago

asked 50 seconds ago

asked 2 minutes ago

asked 2 minutes ago

asked 5 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 12 minutes ago

asked 12 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 15 minutes ago