Question

Consider a European-style call option on a stock that is currently trading at £100. The strike...

Consider a European-style call option on a stock that is currently trading at £100. The strike price of the call is £90. Assume that, in the next 12 months, the stock price can either go up to £120 or go down to £80. Using risk-neutral valuation, calculate the current value of the option if the risk-free rate is 5 percent per annum. Use discrete compounding. Which of the following is correct?


A. £18
B. £18.5
C. £18.75
D. £19

Homework Answers

Answer #1

Sol:

Stock current Price = £100

Strike price = £90

Expected to increase over next period = £120

Expected to decrease over next period = £80

Risk free rate = 5%

CMP as on expiry can be:-

£120 or £80

Therefore, probability of both options are:-

p1= {CMP(1+r)-S2}/(S1-S2)  

where,

CMP = Current CMP

S1 = High CMP as on expiry

S2 = Low CMP as on expiry

p1 = 100(1+0.05) - 80}/(120 - 80)

p1 = 25 - 40 = 0.625

p2 = 1 - 0.625 = 0.375

1) Current value European-style call option,

Call Option premium for 120 = 120 - 90 = 30

Call Option premium for 90 = 0

Therefore, value of call option = (30 x 0.625) = £18.75

Therefore current value European-style call option will be £18.75

Ans is C - £18.75

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a 6-month European call A option on a stock with a strike price of...
Suppose that a 6-month European call A option on a stock with a strike price of $75 costs $5 and is held until maturity, and 6-month European call B option on a stock with a strike price of $80 costs $3 and is held until maturity. The underlying stock price is $73 with a volatility of 15%. Risk-free interest rates (all maturities) are 10% per annum with continuous compounding. Use put-call parity to explain how would you construct a European...
1- A one-year European call option on Stanley Industries stock with a strike price of $55...
1- A one-year European call option on Stanley Industries stock with a strike price of $55 is currently trading for $75 per share. The stock pays no dividends. A one-year European put option on the stock with a strike price of $55 is currently trading for $100. If the risk-free interest rate is 10 percent per year, then what is the current price on one share of Stanley stock assuming no arbitrage? 2- The current price of MB Industries stock...
A European put option is currently worth $3 and has a strike price of $17. In...
A European put option is currently worth $3 and has a strike price of $17. In four months, the put option will expire. The stock price is $19 and the continuously compounding annual risk-free rate of return is .09. What is a European call option with the same exercise price and expiry worth? Also, given that the price of the call option is $5, show how is there an opportunity for arbitrage.
A European call option and put option on a stock both have a strike price of...
A European call option and put option on a stock both have a strike price of $20 and an expiration date in three months. Both sell for $2. The risk-free interest rate is 5% per annum, the current stock price is $25, and a $1 dividend is expected in one month. Identify the arbitrage opportunity open to a trader.
A European call option and put option on a stock both have a strike price of...
A European call option and put option on a stock both have a strike price of $25 and an expiration date in four months. Both sell for $4. The risk-free interest rate is 6% per annum, the current stock price is $23, and a $1 dividend is expected in one month. Identify the arbitrage opportunity open to a trader.
. A stock is currently selling for $20.65. A 3-month call option with a strike price...
. A stock is currently selling for $20.65. A 3-month call option with a strike price of $20 has an option premium of $1.3. The risk-free rate is 2 percent and the market rate is 8 percent. What is the option premium on a 3-month put with a $20 strike price? Assume the options are European style.
A 3-month European call on a futures has a strike price of $100. The futures price...
A 3-month European call on a futures has a strike price of $100. The futures price is $100 and the volatility is 20%. The risk-free rate is 2% per annum with continuous compounding. What is the value of the call option? (Use Black-Scholes-Merton valuation for futures options)
A European call option and put option on a stock both have a strike price of...
A European call option and put option on a stock both have a strike price of $20 and an expiration date in three months. Both sell for $3. The risk-free interest rate is 10 % per aunum, the current stock price is $19 , and a $1 dividend is expected in one month. identify the arbitrage oppotunity to a trader.
A 1-month European call option on a non-dividend-paying-stock is currently selling for $3.50. The stock price...
A 1-month European call option on a non-dividend-paying-stock is currently selling for $3.50. The stock price is $100, the strike price is $95, and the risk-free interest rate is 6% per annum with continuous compounding. Is there any arbitrage opportunity? If "Yes", describe your arbitrage strategy using a table of cash flows. If "No or uncertain", motivate your answer.
A six-month European call option's underlying stock price is $86, while the strike price is $80...
A six-month European call option's underlying stock price is $86, while the strike price is $80 and a dividend of $5 is expected in two months. Assume that the risk-free interest rate is 5% per annum with continuous compounding for all maturities. 1) What should be the lowest bound price for a six-month European call option on a dividend-paying stock for no arbitrage? 2) If the call option is currently selling for $2, what arbitrage strategy should be implemented? 1)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT