How to solve this?
The following table consists of cash flow data for a selected ten days.
Day |
Receipts |
Disbursements |
1 |
60 |
70 |
2 |
90 |
50 |
3 |
80 |
90 |
4 |
90 |
120 |
5 |
110 |
140 |
6 |
60 |
50 |
7 |
60 |
40 |
8 |
120 |
110 |
9 |
80 |
100 |
10 |
110 |
80 |
Solution:
Day | Receipts | Disbursements | Net Cashflows | Net Cashflows | (Net Cashflow-Mean)^2 | (Net Cashflow-Mean)^2 |
1 | 60 | 70 | 60-70 | -10 | (-10-1)^2 | 121 |
2 | 90 | 50 | 50-90 | 40 | (40-1)^2 | 1521 |
3 | 80 | 90 | 90-80 | -10 | (-10-1)^2 | 121 |
4 | 90 | 120 | 120-90 | -30 | (-30-1)^2 | 961 |
5 | 110 | 140 | 140-110 | -30 | (-30-1)^2 | 961 |
6 | 60 | 50 | 50-60 | 10 | (10-1)^2 | 81 |
7 | 60 | 40 | 40-60 | 20 | (20-1)^2 | 361 |
8 | 120 | 110 | 110-120 | 10 | (10-1)^2 | 81 |
9 | 80 | 100 | 80-100 | -20 | (-20-1)^2 | 441 |
10 | 110 | 80 | 110-80 | 30 | (30-1)^2 | 841 |
Mean = | Sum of net Cashflows/10 = 10/10 | Variance = | [Sum of(Net cashflow-mean)]/10 | |||
Mean = | 1 | Variance = | 549 | |||
variance of net daily cash flows = | 549 | |||||
Lower Limit | 300 | |||||
Transaction Cost | 10 | |||||
Annual Interest Rate | 9% | |||||
Spread = 3*[(3*transaction cost*Variance of net cashflows)/(4*(interest rate/365))]^(1/3) = 3*[(3*10*549)/(4*(0.09/365))]^(1/3) | 766.80 | |||||
Upper limit using the Miller-Orr model= | Lower Limit + Spread = 300+766.80= | 1066.80 | ||||
Return Point using the Miller-Orr model= | Lower Limit + 1/3 × Spread= 300+((1/3)*(766.80))= | 555.60 | ||||
Get Answers For Free
Most questions answered within 1 hours.