Compute
Ke and Kn
under the following circumstances:
a. D1 = $5.00, P0 = $70, g = 8%, F = $7.00. (Round your intermediate and final answers to 2 decimal places.)
Ke:
Kn:
b. D1 = $.22, P0 = $28, g = 7%, F = $2.50. (Round your intermediate and final answers to 2 decimal places.)
?Ke:
Kn:
c. E1 (earnings at the end of
period one) = $7, payout ratio equals 40 percent,
P0 = $30, g = 6.0%, F =
$2.20. (Round your intermediate and final answers to 2
decimal places.)
Ke:
Kn:
d. D0 (dividend at the beginning of the first period) = $6, growth rate for dividends and earnings (g) = 7%, P0 = $60, F = $3. (Round your intermediate and final answers to 2 decimal places.)
Ke:
Kn:
In order to solve this question, we will use Gordon model formula:
a.1. P0 = D1 / (Ke - g)
70 = 5 / (Ke - 0.07)
Ke = 5 / 70 + 0.07 = .1414
Ke = 14.14%
a. 2. P0 - F = D1 / (Kn - g)
70 - 7 = 5 / (Kn - 0.07)
Kn = 5 / 63 + 0.07 = .1494
Ke = 14.94%
b.1. P0 = D1 / (Ke - g)
28 = 0.22 / (Ke - 0.07)
Ke = .22 / 28 + 0.07 = .0779
Ke = 7.79%
b. 2. P0 - F = D1 / (Kn - g)
28 - 2.5 = .22 / (Kn - 0.07)
Kn = .22 / 25.5 + 0.07 = .0786
Ke = 7.86%
c. D1 = E1 X payout ratio = 7 X 0.40 = 2.8
c.1. P0 = D1 / (Ke - g)
30 = 2.8 / (Ke - 0.06)
Ke = 2.8 / 30 + 0.06 = .1533
Ke = 15.33%
c. 2. P0 - F = D1 / (Kn - g)
30 - 2.2 = 2.8 / (Kn - 0.06)
Kn = 2.8 / 27.8 + 0.06 = .1607
Ke = 16.07%
d.1. P0 = D0 X (1+g) / (Ke - g)
60 = 6 x (1+0.07) / (Ke - 0.07)
Ke = 6.42 / 60 + 0.07 = 0.177
Ke = 17.7%
d.2. P0 - F = D0 X (1+g) / (Ke - g)
60 - 3 = 6 x (1+0.07) / (Ke - 0.07)
Ke = 6.42 / 57 + 0.07 = 0.1826
Ke = 18.26%
Get Answers For Free
Most questions answered within 1 hours.