Question:Risky Asset A and Risky Asset B are combined so that the new
portfolio consists of...
Question
Risky Asset A and Risky Asset B are combined so that the new
portfolio consists of...
Risky Asset A and Risky Asset B are combined so that the new
portfolio consists of 70% Risky Asset A and 30% Risky Asset
B. If the expected return and standard deviation of
Asset A are 0.08 and 0.16, respectively, and the expected return
and standard deviation of Asset B are 0.10 and 0.20, respectively,
and the correlation coefficient between the two is 0.25: (13
pts.)
What is the expected return of the new portfolio consisting of
Assets A & B in these proportions?
What is the standard deviation of this portfolio?
Assuming a riskless rate of 0.06, what are the proportions of
these two securities in their optimal combination of risky assets?
What is the expected return of this portfolio combination?
Assuming this optimal combination of risky assets is then
combined with the riskless asset which has a return of 0.06, what
standard deviation would you have to tolerate if you wanted to earn
a rate of return of 0.09 from this new portfolio?
Again assuming this optimal combination of risky assets is
combined with the riskless asset, suppose you have $100,000 to
invest and you choose a preferred portfolio consisting of 60% risky
assets and 40% riskless assets. Under these parameters,
how much of your $100,000 would you need to invest each in Asset A,
Asset B, and the riskless asset?